

DETERMINATION OF WATER RESOURCE CLASSES, RESERVE AND RESOURCE QUALITY OBJECTIVES STUDY FOR SECONDARY CATCHMENTS A5 – A9 WITHIN THE LIMPOPO WATER MANAGEMENT AREA (WMA 1) AND SECONDARY CATCHMENT B9 IN THE OLIFANTS WATER MANAGEMENT AREA (WMA 2)

EVALUATION OF RESOURCE UNIT REPORT FINAL

AUGUST 2025

Published by

Department of Water and Sanitation
Private Bag X313
Pretoria, 0001
Republic of South Africa

Tel: (012) 336 7500 / +27 12 336 7500 Fax: (012) 336 6731 / +27 12 336 6731

Copyright Reserved

No part of this publication may be reproduced in any manner without full acknowledgement of the source

This report is to be cited as:

Department of Water and Sanitation, South Africa. 2025. Determination of Water Resource Classes, Reserve and Resource Quality Objectives Study for Secondary Catchments A5 – A9 within the Limpopo Water Management Area (WMA 1) and Secondary Catchment B9 in the Olifants Water Management Area (WMA 2): Evaluation of Resource Unit Report. WEM/WMA01&02/00/CON/RDM/0225.

Prepared by:

Myra Consulting (Pty) Ltd in association with Southern Waters, Anchor Research & Monitoring and Delta-H Groundwater Systems (Pty) Ltd.

Cover page photo credit: View of the Luvuvhu River, Makuleke area. Photo from Lee Berger's Lanner Gorge expedition. 29 July 2007. Author Profberger at English Wikipedia

Determination of Water Resource Classes, Reserve and Resource Quality

Objectives Study for Secondary Catchments A5 – A9 within the Limpopo Water

Management Area (WMA 1) and Secondary Catchment B9 in the Olifants Water

Management Area (WMA 2)

Report Title:

Contract Title:

Evaluation of Resource Unit Report

A. Singh, J. MacKenzie, M. Holland, T. Tlou, J.N. Rossouw, C. Todd, M. Ross, Authors:

B. van der Waal, K Reinecke

DWS Report No.: WEM/WMA01&02/00/CON/RDM/0225

Status of Report:

Revision	Date	Report Status
Rev 0	March 2025	DRAFT
Rev 1	July 2025	FINAL DRAFT
Rev 2	August 2025	FINAL

Professional Service Provider: Myra Consulting (Pty) Ltd Approved for the PSP by: 8 August 2025 Adhishri Singh Date Project Manager Department of Water and Sanitation: Chief Directorate: Water Ecosystems Management Supported by: Recommended by: Signature Signature E Lekalake Adaora Okonkwo Scientific Manager **Project Manager** Approved for the Department of Water and Sanitation by: 22/08/2025 Signature Date Lebogang Betty Matlala Director

DOCUMENT INDEX

The project reports are indicated below.

Bold type indicates this report.

REPORT INDEX	REPORT NUMBER	REPORT TITLE
01	WEM/WMA01&02/00/CON/RDM/0122	Inception Report
02	WEM/WMA01&02/00/CON/RDM/0222	Water Resources Information Gap Analysis Report
03	WEM/WMA01&02/00/CON/RDM/0322	Delineation and Status Quo Report
04	WEM/WMA01&02/00/CON/RDM/0422	Linking the value and condition of the Water Resources Report
05	WEM/WMA01&02/00/CON/RDM/0522	EWR Site Selection and verification Report
06a	WEM/WMA01&02/00/CON/RDM/0123	EWR Report – Rivers (Vol 1) EcoCategorisation
06s	WEM/WMA01&02/00/CON/RDM/0123	EWR Report – Rivers (Vol 2) Data Collection and Analysis
06c	WEM/WMA01&02/00/CON/RDM/0123	EWR Report – Rivers (Vol 3) Ecological Water Requirements
07	WEM/WMA01&02/00/CON/RDM/0223	EWR Report - Groundwater
08a	WEM/WMA01&02/00/CON/RDM/0323a	Wetland Assessment Volume 1 – Ecostatus and Priority Wetlands
08b	WEM/WMA01&02/00/CON/RDM/0323b	Wetland Assessment Volume 2 – EWR of Nylsvley and Makuleke Floodplain Wetlands
09	WEM/WMA01&02/00/CON/RDM/0124	Main EWR Report
10	WEM/WMA01&02/00/CON/RDM/0224	Ecological Base Configuration Scenario Report
11	WEM/WMA01&02/00/CON/RDM/0324	Scenarios Evaluation and Draft Water Resource Classes Report
12	WEM/WMA01&02/00/CON/RDM/0125	Final Scenarios Report
13	WEM/WMA01&02/00/CON/RDM/0225	Evaluation of Resource Unit Report
14	WEM/WMA01&02/00/CON/RDM/0325	Draft Resource Quality Objectives and Confidence Report
15	WEM/WMA01&02/00/CON/RDM/0425	Monitoring Programme to support RQOs and Reserve Implementation Report
16	WEM/WMA01&02/00/CON/RDM/0525	Water Resources Classes, Reserve and RQOs Gazette Template
17	WEM/WMA01&02/00/CON/RDM/0625	Project Close-Out Report

ACRONYMS

ACRONYMS	DESCRIPTION
ASPT	Average Score Per Taxon
CD	Chief Directorate
DO	Dissolved Oxygen
DWA	Department of Water Affairs
DWAF	Department of Water Affairs and Forestry
DWS	Department of Water and Sanitation
EC	Electrical Conductivity
EI	Ecological Importance
EIS	Ecological Importance and Sensitivity
ES	Ecological Sensitivity
EWR	Ecological Water Requirement
FRAI	Fish Response Assessment Index
FSC	Full Supply Capacity
GDP	Gross Domestic Product
GEP	Groundwater Exploitation Potential
GRU	Groundwater Resource Units
GW	Groundwater
GWBF/EWR	Groundwater Baseflow/Ecological Water Requirements
GWBF/RE	Groundwater Baseflow/Recharge
На	Hectares
HDAM	Hydrological Drought Analysis Model
HGM	Hydrogeomorphic
IAP	Invasive Alien Plants
IEI	Integrated Environmental Importance
IR	Irreplaceable
IS	Importance Score
IUA	Integrated Unit of analysis
MAR	Mean Annual Runoff
MCB	Macro Channel Bank
MCM	Million Cubic Metres
MIRAI	Macroinvertebrate Response Assessment Index
N/A	Not applicable
NEC	Nest Ecological Category
NH ₃ -N	Ammonia
PES	Present Ecological Status
PESEIS	Present Ecological State Ecological Importance and Sensitivity

ACRONYMS	DESCRIPTION
PO ₄ -P	Orthophosphates
Pr	Priority
QUAT	Quaternary
RDM	Resource Directed Measures
REC	Recommended Ecological Category
RHP	River Health Programme
RQOs	Resource Quality Objectives
RRU	River Resource Unit
RU	Resource Unit
RUPT	Resource Unit Prioritisation Tool
SANLC	South African National Landcover
SARCOF	South African Regional Climate Outlook Forum
SASS5	South African Scoring System version 5
SAWS	South African Weather Service
SCI	Socio-cultural Importance
SOF	System Operating Forum
SQ	Sub-quaternary
STCCs	Short Term Characteristic Curves
SWSA-GW	Strategic Water Source Area - Groundwater
TDS	Total Dissolved Salts
TEC	Target Ecological Category
TIN	Total Inorganic Nitrogen
VU	Vulnerable
WEM	Water Ecosystems Management
WMA	Water Management Area
WRUI	Water Resource Use Importance

EXECUTIVE SUMMARY

Introduction and approach to prioritising resource units and selecting appropriate subcomponents and indicators for developing RQOs

Resource Quality Objectives (RQOs) are important management objectives against which monitoring data will be assessed and will indicate whether the Water Resource Class is being maintained. The development of Resource Quality Objectives (RQOs) is a seven-step process. Step 1 of the process is to delineate the Integrated Units of Analysis (IUA) and define the Resource Units (RUs) and Step 2, to establish a vision for the catchment was undertaken during the Classification phase of the project.

Due to the large number of RUs within the study area, a rationalisation process was necessary, using the RUPT to identify resource units which would be important to be monitored to ensure the protection of the water resource in accordance with the defined Water Resource Class of each IUA. This was the objective of Step 3 of the RQO process.

The study area comprising secondary catchments A5 to A9 in the Limpopo WMA and secondary catchment B9 in the Olifants WMA have been delineated into twelve IUAs. Figure E 1 shows the 12 delineated IUAs and the delineated and prioritised resource units for the rivers, groundwater, and wetlands.

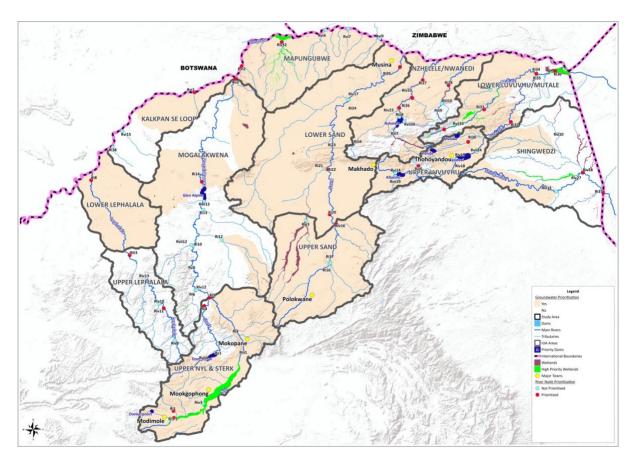


Figure E 1. Map of the delineated IUAs and river, groundwater, and wetland resource units

During Step 4 of the RQO process, the priority resource units were evaluated, using the Resource Unit Evaluation Tool or a modification of the Tool to establish the sub-components and indicators that may be important to either users or the environment and which should be protected to support the resource dependent activities and/or maintain the integrity and ecological functioning of the water resource.

Outcomes of the resource unit prioritisation and selection of sub-components and indicators process

Rivers

The prioritisation of the river resource units were based on (i) position of the resource unit within an IUA; (ii) importance of the resource unit to users; (iii) threats posed to users by current or planned future activities in the resource unit, (iv) the ecological importance of the resource unit; (v) threats faced by the ecological component of the resource unit; (vi) resource units where management actions should be prioritised; and (vii) practical considerations of determining and monitoring RQOs.

A total of seventy-five river RUs were delineated across the study area. Thirty of the RU were prioritised as high priority that would go forward as important resource units for developing and monitoring the RQOs. Sub-components and indicators were selected to represent each of the high priority river RUs. For nineteen of the high priority RUs, baseline data exists, and continued monitoring will need to be undertaken to ensure the target ecological categories are met. For these RU, narrative and numerical RQOs will be set, where possible. For eleven of the RUs, no baseline data exists and for these sites it would be important to set up a baseline monitoring programme. After a few years of collecting monitoring data, it would be possible to develop the Numerical RQOs for each site. Table E 1 provides the sub-components and indicators that would be important to be measured for the high priority river RUs.

Twenty-four RUs were rated medium priority. Over time, a baseline monitoring programme should be established for these RUs after which RQOs can be developed. Table E 2 provides the sub-components and indicators that would be important to be measured for the medium priority river RUs. The monitoring of the high and medium priority RUs will provide good coverage for management of the area.

The PES, EI and ES are recommended to be assessed at each review of the PESEIS Desktop Spreadsheet Model to determine if there are any changes to the river condition for those RUs at a low priority.

Table E 1. Priority River Resource Units and selected Sub-components and Indicators

Table E 1. Pric	ority River Resou					erec	tea	Sub	-cor	про	nen	is ai	Id II	laica	ators	5															
	INA		Upper Lepnalala	Lower Lephalala	Kalkpan se Loop			Upper Nyl/Sterk				MOGalarwella		Mapungubwe	Upper Sand		Lower Sand							Opper Lavavila			Lower Luvuvhu/Mutale			1	Sningwedzi
	Unit	RRU-Riv11	RRU-Riii3	RRU-Ri8	RRU-Rvi1	RRU-Ri4	RRU-Ri1	RRU-Ri1-1	RRU-Ri3	RRU-Ri5	RRU-Ri14	RRU-Rii3	RRU-Rvi2	Riv32	RRU-Riv16	RRU-Ri20	RRU-Ri22	RRU-Ri25	RRU-Ri26	RRU-Riv33	RRU-Ri27	RRU-Ri28	RRU-Riii6	RRU-Ri30	RRU-Ri32	RRU-Rvii33	RRU-Ri33	RRU-Ri34	RRU-Ri36	RRU-Riv28	RRU-Ri37
Sub- component	Indicator																														
Low flow	Maintenance low flow	Х		Х	X		Х			Х	Х	Х		Х		Χ		Х			Χ	Χ	X	X	X		Х	Х	Х		Х
High flow	Maintenance high flow	Х		Х	X		Х			Х	X	X		Х		Χ		X			Χ	Χ	X	X	X		Х	Х	Х		Х
	Discharge		Х			Х		Х	Х				Х		Χ	Χ	Χ		Χ	Χ						Χ				Х	
	IHI score		Х			Х		Х	Х				Х		Х	Χ	Χ		Χ	Χ						Χ				Х	
	GAI Score	Х					Х			Х	Х							Х			Χ	Χ	Х	Х	Х		Х	Х	Х		Х
	Bed erosion	Х		Х	Х		Х			Х	Х	Х		Х		Χ		Х			Χ	Χ	Х	Х	Х		Х	Х	Х		Х
0	Bank erosion	Х		Х	Х		Х			Х	Х	Х		Х		Χ		Х			Χ	Χ	Х	Х	Х		Х	Х	Х		Х
Geomorpholo gy	Flood bench	Х		Х			Х			Х	Х	Х				Χ		Х			Χ	Χ	Х	Х	Х		Х	Х	Х		Х
	Sediment size	Х		Χ			Х			Х	Х	Х				Χ		Х			Χ	Χ	Х	Χ	Χ		Х	Х	Х		Х
	Pool depth	Х		Х			Х			Х	Х	Х						Х			Χ	Х	Х	Х	Х		Х	Х	Х		Х
	Embeddedness	Х		Х			Х			Х	Х	Х						Х			Х	Х	Х	Х	Х		Х	Х	Х		Х
Salts	Electrical conductivity (EC)	х	х	х	X	х	х	х	х	х	Х	Х	х	х	X	х	Х	Х	х	х	х	х	X	X	X	х	X	х	х	Х	х

	IUA		Opper Lepnaiaia	Lower Lephalala	Kalkpan se Loop			Upper Nyl/Sterk				MOgalarwella		Mapungubwe	Upper Sand		Lower Sand							Opper Luvuvnu			Luvuvhu/Mutale			:	Sningwedzi
	Nesource Unit	RRU-Riv11	RRU-Riii3	RRU-Ri8	RRU-Rvi1	RRU-Ri4	RRU-Ri1	RRU-Ri1-1	RRU-Ri3	RRU-Ri5	RRU-Ri14	RRU-Rii3	RRU-Rvi2	Riv32	RRU-Riv16	RRU-Ri20	RRU-Ri22	RRU-Ri25	RRU-Ri26	RRU-Riv33	RRU-Ri27	RRU-Ri28	RRU-Riii6	RRU-Ri30	RRU-Ri32	RRU-Rvii33	RRU-Ri33	RRU-Ri34	RRU-Ri36	RRU-Riv28	RRU-Ri37
Sub- component	Indicator																														
Nutrients	Total Inorganic nitrogen (TIN)	х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	х	Х	Х	Х	Х	Х	х
	Orthophosphate (PO ₄ -P)	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Dissolved oxygen	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
System	pН	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Χ	Х	Х	Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х
variables	Water temperature	х	х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	х	Х	Х	х	Х	Х	Х
	TSS																										Х		Х		Х
	Ammonia (NH3-N)	Х	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	х	х	Х	х	Х	Х	Х
Toxins	Atrazine	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Χ	Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Endosulfan	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Χ	Х	Х	Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х
Pathogens	Escherichia coli (E coli)	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х
ratilogens	Faecal coliforms	Х	Х	X	X	X	X	Х	Х	X	X	X	X		X	X	X	X	X	X	X	X	X	Х	Х	Х	X	Х	Х	X	х

	IUA		Оррег серпагага	Lower Lephalala	Kalkpan se Loop			Upper Nyl/Sterk				Mogalarwena		марипдирме	Upper Sand		Lower Sand							Opper Luvuviiu			Luvuvhu/Mutale			:	Sningwedzi
200	Unit	RRU-Riv11	RRU-Riii3	RRU-Ri8	RRU-Rvi1	RRU-Ri4	RRU-Ri1	RRU-Ri1-1	RRU-Ri3	RRU-Ri5	RRU-Ri14	RRU-Rii3	RRU-Rvi2	Riv32	RRU-Riv16	RRU-Ri20	RRU-Ri22	RRU-Ri25	RRU-Ri26	RRU-Riv33	RRU-Ri27	RRU-Ri28	RRU-Riii6	RRU-Ri30	RRU-Ri32	RRU-Rvii33	RRU-Ri33	RRU-Ri34	RRU-Ri36	RRU-Riv28	RRU-Ri37
Sub- component	Indicator																														
Riparian Vegetation - Aquatic zone	Key species	х																									Х				
	Dominant vegetation	Х			Х		Х			Х	Х	Х												Х	Х		Х	Х			
	Key species	Х			Х		Х			Х	Х	Х												Х	Х		Х	Х			
	Alien plant species	Х			X		Х			X	X	Х												X	X		Х	Х			
Riparian vegetation - Marginal zone	Terrestrial woody cover	Х			Х		Х			Х	Х	х												Х	Х		Х	х			
Wargina 2010	Indigenous woody	Х			Х		Х			X	Х													Х	Х		Х	Х			
	Non-woody cover	Х			Х		Х			X	Х													Х	Х		Х	Х			
	Reed cover	Х			Х		Х			Х	Х	Х												Х	Х		Х				
Riparian	Dominant vegetation			Х												Х		Х			Х	Х	Х						X		х
Vegetation - Marginal	Key species			Х												Χ					Х	Χ	Χ						Х		
Zone (bed)	Alien plant species			Х												Х		X			Х	Х	X						X		Х

August 2025 X

	IUA		Opper Lepinalaia	Lower Lephalala	Kalkpan se Loop			Upper Nyl/Sterk				Mogalarwena		марипдирме	Upper Sand		Lower Sand			ibonew/N/ololo4vN							Lower Luvuvhu/Mutale				Shingwedzi
	Unit	RRU-Riv11	RRU-Riii3	RRU-Ri8	RRU-Rvi1	RRU-Ri4	RRU-Ri1	RRU-Ri1-1	RRU-Ri3	RRU-Ri5	RRU-Ri14	RRU-Rii3	RRU-Rvi2	Riv32	RRU-Riv16	RRU-Ri20	RRU-Ri22	RRU-Ri25	RRU-Ri26	RRU-Riv33	RRU-Ri27	RRU-Ri28	RRU-Riii6	RRU-Ri30	RRU-Ri32	RRU-Rvii33	RRU-Ri33	RRU-Ri34	RRU-Ri36	RRU-Riv28	RRU-Ri37
Sub- component	Indicator																														
	Non-woody cover																				Х										
	Terrestrial woody cover			Х												Χ		Χ			Х	Χ	Χ						Х		х
	Reed cover			Х												Х		Х			Х	Х	Χ						Х		Х
	Dominant vegetation	X			X					X	X			X		Χ					Х	Χ		X	х		Х	х			
	Key species	Х			Х					Х	Х			Х		Χ					Х	Χ		Х	Х		Х	Х			
Riparian Vegetation	Alien plant species	Х			X					X	X			Х		Χ					Х	Χ		X	х		Х	Х			
Non-marginal zone (lower - flood	Terrestrial woody cover	Х			X					X	X			Х		Χ					Х	Χ		Х	х		Х	Х			
benches)	Indigenous woody cover	Х			X					Х	Х													Х	Х		Х	Х			
	Non-woody cover	Х			Х					Х	Х					Х					Х			Х	Х		Х	Х			
Riparian vegetation - Non-marginal	Dominant vegetation	Х		Х	X		Х			X	X	Х		Х		Х		Х			Х	Х	Х	X	х		Х	х	Х		х
zone (upper - banks)	Alien plant species	Х		Х	Х		Х			Х	Х	Х		Х		Х		Х			Х	Х	Х	Х	Х		Х	Х	Х		х

	IUA	1	Opper Lepitalala	Lower Lephalala	Kalkpan se Loop			Upper Nyl/Sterk				Mogalahweila	O N	Mapungubwe	Upper Sand		Lower Sand				NZIIGIGIGI NWAIIGOI						Lower Luvuvhu/Mutale			1	Sningwedzi
	Unit	RRU-Riv11	RRU-Riii3	RRU-Ri8	RRU-Rvi1	RRU-Ri4	RRU-Ri1	RRU-Ri1-1	RRU-Ri3	RRU-Ri5	RRU-Ri14	RRU-Rii3	RRU-Rvi2	Riv32	RRU-Riv16	RRU-Ri20	RRU-Ri22	RRU-Ri25	RRU-Ri26	RRU-Riv33	RRU-Ri27	RRU-Ri28	RRU-Riii6	RRU-Ri30	RRU-Ri32	RRU-Rvii33	RRU-Ri33	RRU-Ri34	RRU-Ri36	RRU-Riv28	RRU-Ri37
Sub- component	Indicator																														
	PES	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Χ	Χ	Χ	Χ	Х	Χ	Х	Χ	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ
	Species richness	Х		X	Х		X			Х	Х	X		X		X		Х			X	X	X	Х	Х		Х	Х	X		х
Riparian Zone	Threatened riparian species										x			X							X	X		X	X			x			
	Endemic riparian species	х					Х			х	х					Х						х	Х	х	х		х				
	FRAI score	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Fiab	Overall fish health	Х		Х	Х		Х			Х	Х			Х		Х		Х			Х	Х	Х	Х	Х		Х	Х	Х		Х
Fish	Species diversity	Х		Х	Х		X			Х	Х			X		X		Х			Х	X	Х	Х	Х		Х	Х	Х		х
	Key species	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Macroinverte	MIRAI Category and Score	х	х			х	X	x	x	х	х		x		x		X		X	X	х	X	x	х	х	x	х	х		x	
brates	SASS5 Total Score and ASPT	x	X			х	X	X	Х	х	х		X		X		X		X	X	X	X	Х	x	x	Х	x	х		x	

	IUA		Upper Lepnaiaia	Lower Lephalala	Kalkpan se Loop			Upper Nyl/Sterk				Mogalarwella		Mapungubwe	Upper Sand		Lower Sand							opper Luvuvnu			Lower Luvuvhu/Mutale				Sningwedzi
	Resource Unit	RRU-Riv11	RRU-Riii3	RRU-Ri8	RRU-Rvi1	RRU-Ri4	RRU-Ri1	RRU-Ri1-1	RRU-Ri3	RRU-Ri5	RRU-Ri14	RRU-Rii3	RRU-Rvi2	Riv32	RRU-Riv16	RRU-Ri20	RRU-Ri22	RRU-Ri25	RRU-Ri26	RRU-Riv33	RRU-Ri27	RRU-Ri28	RRU-Riii6	RRU-Ri30	RRU-Ri32	RRU-Rvii33	RRU-Ri33	RRU-Ri34	RRU-Ri36	RRU-Riv28	RRU-Ri37
Sub- component	Indicator																														
	Key taxa and abundance	Х		Х	Х		Х			Х	Х			Х		Х		Х			Х	Х	Х	Х	Х		Х	Х	Х		х
	Taxon dominance	х		Х	Х		Х			Х	Х			Х		Х		Х			Х	Х	Х	Х	х		Х	х	Х		х

August 2025 Xiii

Table E 2.Sub-components and indicators proposed for the medium priority river resource units

2.545			Opper Lephalaia IOA	-	Kaikpan se Loop IUA			Opper Nyloters Co		۷ - ا	Wogalakweria 10A	3100	Mapungubwe IUA				Lower Sand IUA		Nzhelele	IUA			Upper Luvuvhu IUA		Shingwedzi River IUA
	Resource Unit	RRU-Riv8	RRU-Riv13	RRU-Ri38	RRU-Rvi15	RRU-Rvii4	RRU-Rv1	RRU-Riv3	RRU-Riii1	RRU-Ri6	RRU-Ri13	RRU-Rvi4	RRU-Rvi7	RRU-Rvi9	RRU-Ri16	RRU-Ri17	RRU-Ri23	RRU-Riii7	RRU-Rvii34	RRU-Riii9	RRU-Riii10	RRU-Rvii19	RRU-Riii5	RRU-Riv18	RRU-Rvi13
Sub-component	Indicator																								
Water Quantity	Discharge	Χ	Х	Х	Χ	Χ	Χ	Χ	Х	Х	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Х	Χ	X	Χ	Χ	Х	Χ
Riparian zone	PES	Χ	Х	Х	Χ	Χ	Х	Χ	Х	Х	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Х	Χ
Ripanan zone	Species richness	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Χ	Χ	Χ	Х	Х	Х	Х	Х	Χ	Х	Х
Fish	FRAI	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х
Macroinvertebrat	MIRAI Category and Score	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х
es	SASS5 Total Score and ASPT	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Х	X	Х	Х	Х	Χ	Х	Х	Х	Х

<u>Dams</u>

Priority dams were selected on their overall ranking of importance. The importance of the dam was based on (i) the anticipated level of impact of current and future use/ activities in the upstream catchments on the inflows to the dam, (ii) the importance of releases for EWRs downstream of the dam, (iii) on importance of the dam for in-dam activities and releases of water for downstream use (irrigation, domestic, mining and industries), (iv) the dams which have a negative impact on the quality of the dependent activities both in dam as well as the releases for the downstream users. The priority dams are listed in Table E 3.

In determining the choice of components, sub-components and indicators for developing dam RQOs, consideration was given to the purpose of the dam, current and future pressures on the dam, importance of the dam to downstream use and for recreational activities.

A generic list of sub-components and indicators which forms the basis for customising components for specific priority Dam RUs is provided in Table E 4.

Table E 3. Prioritised dams

IUA	Dam Name	River / Watercourse	Quaternary Catchment	MAR at Dam site	Capacity (million m3)	Purpose / Use
Nyl/Sterk	Donkerpoort	Little Nyl	A61A	5.3	2.4	Municipal Use & Industries
Nyl/Sterk	Doorndraai	Sterk	A61H	38.1	46.5	Municipal Use & Industrial Use
Mogalakwena	Glen Alpine	Mogalakwena	A62J	204	18.9	Irrigation
Nzhelele- Nwanedi	Nzhelele	Nzhelele	A80C	73.4	51.2	Irrigation
Upper Luvuvhu	Albasini	Luvuvhu	A91B	14.56	25.2	Irrigation, Domestic & Industrial Use
Upper Luvuvhu	Vondo	Mutshindudi	A91G	132.75	30.45	Irrigation
Upper Luvuvhu	Nandoni	Luvuvhu	A91F	30.8	164	Irrigation, Domestic, Industrial & Recreational Use
Upper Luvuvhu	Mvuwe	Mbwedi	A91G	132.75	11	Irrigation, Domestic & Industrial Use

Table E 4. Selected sub-components and indicators for priority dam resource units

Component	Subcomponent	Reason for selection	Indicator
Quantity	Dam releases	Dam storage levels determine the water allocations that can be supplied to each user sector with EWR a priority user	Percentage storage level based on decisions made at the start of the hydrological year as part of the annual operating analysis
Quality	Nutrients	The system must be maintained at concentrations where they do not impact negatively on the ecosystem, on	Total Phosphates (mg/l) Chlorophyll a (µg/l)

Component	Subcomponent	Reason for selection	Indicator
		agriculture and are acceptable for municipal treatments	
	Salts	Salt levels must be maintained at concentrations where they do not impact negatively on the ecosystem, on agriculture and are acceptable for municipal treatments	Electrical Conductivity (EC) (mS/m) Total dissolved salts (TDS) (mg/l)
	Pathogens	The system must be maintained in a state that is safe for contact recreation	Escherichia coli, Faecal coliforms
Biota	Fish	Fish abundance must be maintained at a level that fulfils ecosystem services roles of recreational angling and subsistence harvesting.	Maintain a stable catch per unit effort relative to previous surveys undertaken under similar seasons and conditions.
		Fish health to be maintained in a state that allows for consumption and recreational angling.	Overall health of individuals Parasite burden and bacterial infections impacting <1% of the fish population
Aquatic alien	Nutrients	There is a direct link of aquatic alien vegetation abundance and vigour to nutrients with the water column	Total Phosphates (mg/l) Chlorophyll a (μg/l)
vegetation	Extent of alien hace the potential to cover dams, causing fish kills and potentially unhealthy conditions for humans		% aerial cover of alien vegetation (% of dam surface area)

Wetlands

Since wetlands are numerous and scattered throughout the study area, and limited resources prevent detailed assessment of all of them it was necessary to identify high-priority wetlands or wetland groups. Only the highest priority wetlands are therefore earmarked for further analysis in the process. These high-priority areas were selected based on ecological, socio-cultural and water resource use importance and are often areas of high ecological importance where water resources are stressed or may be stressed in future.

The results of wetland prioritisation are geographically shown in Figure E 2 at the sub-quaternary (SQ). scale and are also tabulated in Table E 5. SQs with Very High priority comprised 9.7% of SQs and 37.7% of SQs had a High priority leaving just over 52% of SQs with a Moderate or Low priority.

August 2025 XVi

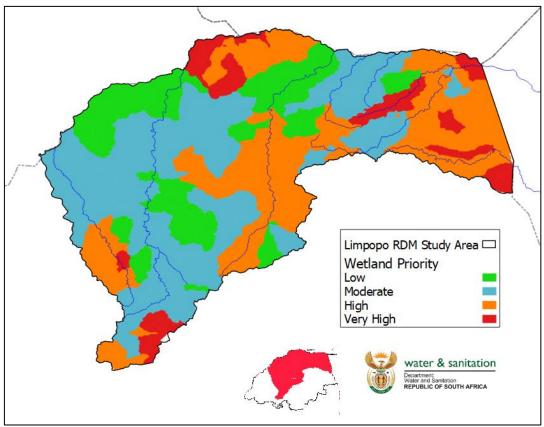


Figure E 2. Wetland priority per SQ.

Table E 5. Summary of infield verification of high priority wetlands.

High Priority Wetland	PES Score	PES Category	EI	ES	REC	Reason for REC	TEC	How to achieve the TEC
Luvuvhu Floodplain (Makuleke)	80	B/C	Very High	High	В	Very High EI supports half category increase	В	Reduce AIP; manage elephant impact
Nyl River Floodplain	65	С	Very High	High	B/C	Very High EI supports half category increase	B/C	Reduce AIP & artificial water storage; manage grazing & trampling pressure
Wonderkrater	80	B/C	Very High	Moderate	В	Very High EI supports half category increase	В	Reduce AIP; manage grazing & trampling pressure
Nyl Pans	57	D	High	High	C/D	High EI supports half category increase	C/D	Improve water quality
Maloutswa Floodplain	66	С	Very High	High	B/C	Very High EI supports half category increase	С	Maintain PES
Kolope Wetlands	90	A/B	Very High	Low	A/B	Maintain PES as already near natural	A/B	Maintain PES

High Priority Wetland	PES Score	PES Category	EI	ES	REC	Reason for REC	TEC	How to achieve the TEC
Lake Fundudzi	78	B/C	Very High	High	В	Very High EI supports half category increase	В	Reduce AIP
Mutale Wetlands	62	C/D	Very High	High	O	Very High EI supports half category increase	O	Reduce AIP & sand mining
Mokamole (tributary of the Mogalakwena)	80	B/C	High	High	В	High EI supports half category increase	B/C	Maintain PES
Malahlapanga	78	B/C	Very High	Moderate	В	Very High EI supports half category increase	B/C	Maintain PES
Bububu wetlands (tributary of the Shingwedzi)	97	A	Very High	Moderate	A	Maintain PES as already natural	A	Maintain PES

Components, sub-components and indicators were selected to represent each of the high priority wetlands. These are listed in Table E-6 and will be used to derive narrative and where possible numeric RQOs for each wetland / wetland complex.

Table E-6. Selected sub-components and indicators for the high priority wetlands

SQs	Component	Subcomponent	Indicator								
Luvuvhu l	Luvuvhu Floodplain (Makuleke) - river & floodplain complex with pans (3648 Ha)										
		Water Inputs	Hydrology (EWR)								
	Water	vvator inputs	Depth to ground water on the floodplain								
	quantity	Water distribution and	Flooding by damming with the wetland								
		retention patterns	Pan water level regime								
			Extent of natural wooded land within the wetland								
		Wetland vegetation structure	complex (land cover classes 1-4, 2020)								
		/ composition	Extent of herbaceous wetlands (land cover classes								
			22-23, 2020) Extent of alien invasive plants within the wetland /								
			complex								
	Habitat		Aerial extent of developments within the wetland								
			complex (includes mines and quarries, SANLC								
		Habitat fragmentation with the wetland delineation	classes 68-72, built-up areas, infrastructure, canals,								
		the wetland delineation	furrows and trenching , SANLC classes 47-67)								
			Land cover classes denoted to cultivated areas								
			within the wetland complex (classes 32-46 & 73, 2020)								
			Migratory species diversity dependent on wetland								
			complex								
		Waterbird species	Wetland / floodplain birds (species diversity /								
			abundance)								
	Biota		Mammal species diversity (wetland-dependent)								
		Mammals	Elephant abundance								
			Hippo abundance (VU)								
		Reptiles	Crocodile abundance								
		Vehilles	Reptile species diversity (wetland-dependent)								

August 2025 XVIII

SQs	Component	Subcomponent	Indicator	
		Fish	Species diversity in the Luvuvhu River and perennial pans	
		Amphibians	Frogs and toads (species diversity)	
		Wetland plants	Endangered / unique species diversity	
		Taxon richness	Number of wetland-dependent species	
	\\/ata=	Sediments	Sediment deposition / scour balance	
	Water quality	Water chemistry	Water quality (effluent) to comply with effluent standards.	
Nyl River	floodplain (193	378 Ha)		
	Water	Water Inputs	Hydrology (EWR) Stream permanency	
	quantity		Seasonality	
	quarity	Water distribution and retention patterns	Flooding by damming within the wetland	
	Habitat	Wetland vegetation structure / composition	Extent of natural grassland within the wetland complex (land cover classes 12-13; SANLC, 2020) Extent of natural wooded land within the wetland complex (land cover classes 1-4; SANLC, 2020) Extent of herbaceous wetlands (land cover classes 22-23; SANLC, 2020)	
		Habitat fragmentation within the wetland delineation	Extent of alien invasive plants within the wetland / complex Extent of planted forest within the wetland complex (land cover classes 5-7; SANLC, 2020) Assign extent of developments within the wetland	
		Waterbirds	Wetland is within 500m of a threatened waterbird point locality. Wetland / floodplain birds (species diversity / abundance)	
		Mammals	Mammal species diversity (wetland-dependent)	
	Biota	Reptiles	Reptile species diversity (wetland-dependent)	
	Blota	Fish	Species diversity in the wetland (may be only during flooding)	
		Amphibians	Frogs and toads (species diversity)	
		Wetland plants	Endangered / unique species diversity	
		Taxon richness	Number of wetland-dependent species	
	Water	Sediments	Sediment deposition / scour balance	
	quality	Water chemistry	Water quality (effluent) to comply with effluent standards.	
Wonderki		nal wetland (655ha)		
	Water quantity	Water Inputs	Depth to ground water (Spring)	
		Wetland vegetation structure / composition	Extent of natural grassland within the wetland complex (land cover classes 12-13; SANLC, 2020) Extent of natural wooded land within the wetland complex (land cover classes 1-4; SANLC, 2020) Extent of herbaceous wetlands (land cover classes 22-23; SANLC, 2020)	
	Habitat	Habitat fragmentation within the wetland delineation	Extent of alien invasive plants within the wetland / complex Extent of planted forest within the wetland complex (land cover classes 5-7; SANLC, 2020) Aerial extent of developments within the wetland complex (includes mines and quarries, SANLC)	

SQs	Component	Subcomponent	Indicator
			classes 68-72, built-up areas, infrastructure, canals, furrows and trenching, SANLC classes 47-67) Land cover classes denoted to cultivated areas within the wetland complex (classes 32-46 & 73; SANLC, 2020)
	Biota	Wetland plants	Erosion / incision Endangered / unique species diversity
N. I.B.		Taxon richness	Number of wetland-dependent species
Nyi Pans	(valley bottom	with a channel with depressio	
	Water quantity	Water Inputs	Hydrology (EWR) Stream permanency Seasonality
		Wetland vegetation structure / composition	Extent of natural grassland within the wetland complex (land cover classes 12-13; SANLC, 2020) Extent of natural wooded land within the wetland complex (land cover classes 1-4; SANLC, 2020) Extent of herbaceous wetlands (land cover classes 22-23; SANLC, 2020)
	Habitat	Habitat fragmentation within the wetland delineation	Extent of alien invasive plants within the wetland / complex Extent of planted forest within the wetland complex (land cover classes 5-7; SANLC, 2020) Aerial extent of developments within the wetland complex (includes mines and quarries, SANLC classes 68-72, built-up areas, infrastructure, canals, furrows and trenching, SANLC classes 47-67) Land cover classes denoted to cultivated areas within the wetland complex (classes 32-46 & 73; SANLC, 2020)
		Lake area	Extent of natural open water (wet & dry season)
		Waterbird species	Wetland / floodplain birds (species diversity)
	Biota	Wetland plants	Endangered / unique species diversity
		Taxon richness	Number of wetland-dependent species
	Water Quality	Water chemistry	Water quality (effluent) to comply with effluent standards.
Maloutsw	a Floodplain (3	888 Ha)	
	Water	Water Inputs	Hydrology (EWR) Stream permanency Seasonality
	quantity	Water distribution and retention patterns	Flooding by damming within the wetland
		Wetland vegetation structure / composition	Extent of natural grassland within the wetland complex (land cover classes 12-13; SANLC, 2020) Extent of natural wooded land within the wetland complex (land cover classes 1-4; SANLC, 2020) Extent of herbaceous wetlands (land cover classes 22-23; SANLC, 2020)
	Habitat	Habitat fragmentation within the wetland delineation	Extent of alien invasive plants within the wetland / complex Extent of planted forest within the wetland complex (land cover classes 5-7; SANLC, 2020) Aerial extent of developments within the wetland complex (includes mines and quarries, SANLC classes 68-72, built-up areas, infrastructure, canals, furrows and trenching, SANLC classes 47-67) Land cover classes denoted to cultivated areas within the wetland complex (classes 32-46 & 73; SANLC, 2020) Erosion / incision
	Biota	Waterbirds	Wetland / floodplain birds (species diversity)

August 2025 XX

SQs	Component	Subcomponent	Indicator		
		Mammals	Mammal species diversity (wetland-dependent)		
		Wetland plants	Endangered / unique species diversity		
		Taxon richness	Number of wetland-dependent species		
	Water	Sediments	Sediment deposition / scour balance		
	quality	Water chemistry	Water quality (effluent) to comply with effluent standards.		
Kolope V	<u>/etlands (Riveri</u>		T		
	Water	Water Inputs	Hydrology (EWR)		
	quantity	Water distribution and retention patterns	Flooding by damming within the wetland		
		Wetland vegetation structure / composition	Extent of natural grassland within the wetland complex (land cover classes 12-13; SANLC, 2020) Extent of natural wooded land within the wetland complex (land cover classes 1-4; SANLC, 2020) Extent of herbaceous wetlands (land cover classes 22-23; SANLC, 2020)		
			Extent of alien invasive plants within the wetland / complex		
	Habitat	Habitat fragmentation within the wetland delineation	Extent of planted forest within the wetland complex (land cover classes 5-7; SANLC, 2020) Aerial extent of developments within the wetland		
	Biota	Taxon richness	Number of wetland-dependent species		
Lake Fun	dudzi (depress	ional; 517 Ha)			
	Water	Water Inputs	Hydrology (EWR)		
	quantity	Water distribution and	Lake water level regime		
		Wetland vegetation structure / composition	Extent of natural grassland within the wetland complex (land cover classes 12-13; SANLC, 2020) Extent of natural wooded land within the wetland complex (land cover classes 1-4; SANLC, 2020) Extent of herbaceous wetlands (land cover classes 22-23; SANLC, 2020)		
	Habitat	Habitat fragmentation within the wetland delineation	Extent of alien invasive plants within the wetland of complex Extent of planted forest within the wetland complex (land cover classes 5-7; SANLC, 2020) Agrial extent of developments within the wetland		
		Lake area	Extent of natural open water (wet & dry season)		
	Biota	Taxon richness	Number of wetland-dependent species		
	Water	Sediments	Sediment deposition / scour balance		
	quality	Water chemistry	Water quality (effluent) to comply with effluent standards.		
Mutale W	etlands (Valley	bottom with and without chan			
	, i	Water Inputs	Hydrology (EWR)		
	Water quantity	Water distribution and retention patterns	Flooding by damming within the wetland		
	Habitat	Wetland vegetation structure / composition	Extent of natural grassland within the wetland complex (land cover classes 12-13; SANLC, 2020)		

August 2025 XXI

SQs	Component	Subcomponent	Indicator
			Extent of natural wooded land within the wetland complex (land cover classes 1-4; SANLC, 2020)
			Extent of herbaceous wetlands (land cover classes 22-23; SANLC, 2020)
			Extent of alien invasive plants within the wetland / complex
			Extent of planted forest within the wetland complex (land cover classes 5-7; SANLC, 2020) Aerial extent of developments within the wetland
		Habitat fragmentation within the wetland delineation	complex (includes mines and quarries, SANLC classes 68-72, built-up areas, infrastructure, canals, furrows and trenching, SANLC classes 47-67)
			Land cover classes denoted to cultivated areas within the wetland complex (classes 32-46 & 73; SANLC, 2020)
	Biota	Taxon richness	Extent of sand mining Number of wetland-dependent species
	Water	Water chemistry	Water quality (effluent) to comply with effluent
Mokamole	quality (tributary of t	l he Mogalakwena; Valley botto	standards.
moraniole		Water Inputs	Hydrology (EWR)
	Water quantity	Water distribution and retention patterns	Flooding by damming within the wetland
	Habitat		Extent of natural grassland within the wetland complex (land cover classes 12-13; SANLC, 2020)
		Wetland vegetation structure / composition	Extent of natural wooded land within the wetland complex (land cover classes 1-4; SANLC, 2020) Extent of herbaceous wetlands (land cover classes 22-23; SANLC, 2020)
		Habitat fragmentation within the wetland delineation	Extent of alien invasive plants within the wetland / complex Extent of planted forest within the wetland complex (land cover classes 5-7; SANLC, 2020) Aerial extent of developments within the wetland complex (includes mines and quarries, SANLC classes 68-72, built-up areas, infrastructure, canals, furrows and trenching, SANLC classes 47-67) Land cover classes denoted to cultivated areas within the wetland complex (classes 32-46 & 73; SANLC, 2020)
	Biota	Taxon richness	Number of wetland-dependent species
Peat dom		lahlapanga (47 Ha)	
	Water quantity	Water Inputs	Depth to ground water (springs)
		Wetland vegetation structure / composition	Extent of natural grassland within the wetland complex (land cover classes 12-13; SANLC, 2020) Extent of natural wooded land within the wetland complex (land cover classes 1-4; SANLC, 2020) Extent of herbaceous wetlands (land cover classes 22-23; SANLC, 2020)
	Habitat	Habitat fragmentation within the wetland delineation	Extent of alien invasive plants within the wetland / complex Aerial extent of developments within the wetland complex (includes mines and quarries, SANLC classes 68-72, built-up areas, infrastructure, canals, furrows, and trenching, SANLC classes 47-67) Land cover classes denoted to cultivated areas within the wetland complex (classes 32-46 & 73; SANLC, 2020)
	Biota	Mammals	Elephant density
L	1	ı	

August 2025 XXIII

SQs	Component	Subcomponent	Indicator	
			Buffalo density	
		Taxon richness	Number of wetland-dependent species	
Bububu w	etlands (tribut	ary of the Shingwedzi); Riveri	ne with sodic; 6533 Ha)	
	Water quantity	Water Inputs	Hydrology (EWR)	
	quanti	Wetland vegetation structure / composition	Extent of natural grassland within the wetland complex (land cover classes 12-13; SANLC, 2020) Extent of natural wooded land within the wetland complex (land cover classes 1-4; SANLC, 2020)	
		, compositor	Extent of herbaceous wetlands (land cover classes 22-23; SANLC, 2020)	
	Habitat	Habitat fragmentation within	Extent of alien invasive plants within the wetland / complex Aerial extent of developments within the wetland complex (includes mines and quarries, SANLC	
		the wetland delineation	classes 68-72, built-up areas, infrastructure, canals, furrows and trenching, SANLC classes 47-67) Land cover classes denoted to cultivated areas within the wetland complex (classes 32-46 & 73; SANLC, 2020)	
	Water quality	Sediments	Sediment deposition / scour balance	

Groundwater

A total of 43 quaternary catchments are prioritised, based on the priority ranking approach followed. Manual selection of some quaternary catchments where done based on the availability of baseline data as well as the overall significance of groundwater. The reason for the prioritisation of an area and the existence of baseline data informs the type of RQOs to be developed. In cases where there is insufficient baseline data on which to establish an RQO, narrative RQOs can be developed along with monitoring recommendations to establish the baseline and implement more detailed RQOs in future. Where there are no quaternary catchments prioritised for the development of RQOs it is recommended that best practice wellfield/groundwater management guidelines are implemented.

The sub-components and indicators selected for the groundwater priority RU are indicated in Table E-7.

August 2025 XXIII

Table E-7. Sub-components and indicators selected for the high priority groundwater resource units

Description	GRU	Quat	Description (of prioritised resource units)	Quantity			Quality				
Middle Lephalala	A50-2	A50G	Low to Moderate groundwater use to support rural water supply and groundwater schemes.	Abstraction (Available Yield)			Salts, Nutrients				
Lower Lephalala	A50-3	A50H	Moderate groundwater use to support economic activities (agriculture), rural water supply and groundwater schemes.	Abstraction (Available Yield)			Salts, Nutrients				
Kalkpan	A50-4	A63C	Low to Moderate groundwater use to rural water supply. GW could play a role in supporting spring seepages.	Abstraction (Available Yield)	Discharge	Low flow in river					
		A61A	High groundwater use to support groundwater schemes and Modimolle wellfield. GW play a moderate role in supporting baseflow.	Abstraction (Available Yield)	Discharge						
	A61B A61-1 A61D A61E	Low to Moderate groundwater use to support rural water supply. GW play a moderate role in supporting baseflow (and wetlands).	Abstraction (Available Yield)	Discharge	Low flow in river						
Nyl River Valley		A61C	Low to Moderate groundwater use to support rural water supply. GW play a moderate role in supporting baseflow (and Nylsvley).	Abstraction (Available Yield)	Discharge						
					A61D	Low to Moderate groundwater use to support groundwater schemes and Mookgophong wellfield. GW play a moderate role in supporting baseflow (and wetlands).	Abstraction (Available Yield)	Discharge		Salts, Nutrients	Pathogens
		A61E	Moderate groundwater use to support groundwater schemes/wellfields and rural water supply. GW play a moderate role in supporting baseflow (and wetlands).	Abstraction (Available Yield)	Discharge		Salts, Nutrients	Pathogens			
Sterk	A61-2	A61H	Low to Moderate groundwater use to support groundwater schemes/wellfields and rural water supply. GW could play a moderate role in supporting baseflow (and wetlands).	Abstraction (Available Yield)	Discharge						
Unnor		A61F	Low to Moderate groundwater use to support groundwater schemes/Mokopane wellfields and rural water supply. GW play a role in supporting baseflow.	Abstraction (Available Yield)	Discharge		Salts, Nutrients	Pathogens			
Upper Mogalakwena	A61-3	A61G	Moderate groundwater use to support groundwater schemes, Mogalakwena Mine wellfields and rural water supply. GW play a moderate role in supporting baseflow.	Abstraction (Available Yield)	Discharge		Salts, Nutrients				
Matlala	A62-2	A62E	Low to Moderate groundwater use to support economic activities (agriculture) and rural water supply. GW	Abstraction (Available Yield)	Discharge						

August 2025 XXIV

Description GRU		Quat	t Description (of prioritised resource units)			Quality	Quality	
			could play a role in supporting baseflow (and wetlands).					
Lower	A63-1	A63A	High groundwater use to support economic activities (agriculture).	Abstraction (Available Yield)		Salts, Nutrients		
Mogalakwena	A63-1	A63D	Moderate groundwater use to support economic activities (agriculture) (Alldays) and groundwater schemes and rural water supply.	Abstraction (Available Yield)		Salts, Nutrients		
Limpopo	A63/71-3	A63E	High groundwater use to support economic activities (agriculture). Hosts Mapungubwe and Venetia Mine. GW could play a role in supporting wetlands.	Abstraction (Available Yield)	Discharge	Salts, Nutrients		
Tributaries	A03// 1-3	A71L	High groundwater use to support economic activities (mining). Schroda/Greefswald Wellfields. Hosts Mapungubwe.	Abstraction (Available Yield)	Discharge	Salts, Nutrients		
Unner Sand	A71-1	A71A	High groundwater use to support economic activities. Hosts Polokwane (i.e., Sand River) wellfields.	Abstraction (Available Yield)	Discharge	Salts, Nutrients		
Upper Sand	At I-1	A71B	High groundwater use to support economic activities (Several wellfields, groundwater schemes and rural water supply).	Abstraction (Available Yield)	Discharge	Salts, Nutrients	Pathogens	
		A71C	High groundwater use to support economic activities (agriculture), rural water supply and groundwater schemes.	Abstraction (Available Yield)	Discharge	Salts, Nutrients		
Middle Sand	A71-2	A71D	High groundwater use to support groundwater schemes and rural water supply.	Abstraction (Available Yield)	Discharge			
		A71H	Moderate groundwater use to support groundwater schemes (Makhado).	Abstraction (Available Yield)		Salts, Nutrients		
		A71E	High groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting wetlands.	Abstraction (Available Yield)	Discharge	Salts, Nutrients		
Hout	A71-3	A71F	High groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting wetlands.	Abstraction (Available Yield)	Discharge	Salts, Nutrients		
		A71G	High groundwater use to support economic activities (agriculture), groundwater schemes and rural water supply.	Abstraction (Available Yield)		Salts, Nutrients		

August 2025 XXV

Description	GRU	Quat	Description (of prioritised resource units)	Quantity		Quality		
		A72A	High groundwater use to support economic activities (agriculture), groundwater schemes and rural water supply.	Abstraction (Available Yield)	Discharge		Salts, Nutrients	
	A71-4	A71J	High groundwater use to support economic activities (agriculture) and rural water supply. GW could play a role in supporting wetlands.	Abstraction (Available Yield)			Salts, Nutrients	
Sandbrak		A72B	Moderate groundwater use to support economic activities (agriculture), groundwater schemes and rural water supply.	Abstraction (Available Yield)				
	A71-5	A71K	High groundwater use to support groundwater schemes, rural water supply and Musina (i.e., Limpopo River) wellfield.	Abstraction (Available Yield)	Discharge		Salts, Nutrients	Pathogens
		A80A	Low to moderate groundwater use to support groundwater schemes and rural water supply. GW play a role in supporting wetlands and spring seepages.	Abstraction (Available Yield)	Discharge			
Upper Nzhelele	A80-1	A80F	Moderate groundwater use to support economic activities (agriculture) and rural water supply. GW could play a role in supporting wetlands. Potential coal mining development.	Abstraction (Available Yield)			Salts, Nutrients	
Lower Nzhelele	A80-2	A80G	Moderate groundwater use to support economic activities (agriculture) and rural water supply. GW could play a role in supporting baseflow and spring seepages.	Abstraction (Available Yield)	Discharge	Low flow in river		
	A80-3	A80J	Moderate groundwater use to support economic activities (agriculture), groundwater schemes and rural water supply. GW could play a role in supporting wetlands.	Abstraction (Available Yield)	Discharge	Low flow in river		
		A91A	High groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting baseflow.	Abstraction (Available Yield)	Discharge			
Upper Luvuvhu	A91-1	A91B	Moderate groundwater use to support economic activities (agriculture), groundwater schemes and rural water supply. GW could play a role in supporting baseflow.	Abstraction (Available Yield)	Discharge		Salts, Nutrients	
		A91C	High groundwater use to support economic activities (agriculture), groundwater schemes and rural water supply. GW could play a role in supporting baseflow.	Abstraction (Available Yield)	Discharge		Salts, Nutrients	
		A91E	Low groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting baseflow.	Abstraction (Available Yield)	Discharge		Salts, Nutrients	

Description	GRU	Quat	Description (of prioritised resource units)	Quantity		Quality		
		A91F	Low groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting baseflow.	Abstraction (Available Yield)	Discharge		Salts, Nutrients	
		A91G	Low groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting baseflow and wetlands.	Abstraction (Available Yield)	Discharge	Low flow in river	Salts, Nutrients	
		A91H	Low groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting baseflow.	Abstraction (Available Yield)	Discharge	Low flow in river		
		A92B	Low to Moderate groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting baseflow and wetlands.	Abstraction (Available Yield)	Discharge	Low flow in river		
Mutale/Luvuvhu	A91-2	A92C	Low to Moderate groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting baseflow and spring seepages.	Abstraction (Available Yield)	Discharge			
		A92D	Low to Moderate groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting baseflow and wetlands.	Abstraction (Available Yield)	Discharge	Low flow in river		
Shingwedzi	B90-1	B90B	Low to Moderate groundwater use to support groundwater schemes and rural water supply.	Abstraction (Available Yield)				
Jilligweuzi		B90F	Low to Moderate groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting wetlands.	Abstraction (Available Yield)	Discharge			

August 2025 XXVIII

Conclusion

Resource units were delineated within each IUA for river, dams, wetlands and groundwater resources and were prioritised using the RUPT to identify resource units which would be important to be monitored to ensure the protection of the water resource in accordance with the defined Water Resource Class of each IUA.

The priority resource units were evaluated, using the Resource Unit Evaluation Tool or a modification of the Tool to establish the sub-components and indicators that may be important to either users or the environment and which should be protected to support the resource dependent activities and/or maintain the integrity and ecological functioning of the water resource.

Going forward the draft RQOs will be developed for the priority sub-components and indicators in step 5 of the RQOs process.

August 2025 XXVIII

TABLE OF CONTENTS

D	OCUM	NENT INDEX	iii
Α	CRON	IYMS	iv
E	XECU [.]	TIVE SUMMARY	vi
T/	ABLE	OF CONTENTS	xxix
LI	ST OF	F FIGURES	xxxi
LI	ST OF	F TABLES	xxxii
1		roduction	
•	1.1	Background	
		Objectives of the Study	
	1.2		
	1.3	Study area	
	1.4	Purpose of this report	
2	OV	ERVIEW OF THE RESOURCE QUALITY OBJECTIVE PROCESS	3
3	RE	SOURCE UNIT PRIORITISATION	4
	3.1	River Resource Unit Prioritisation	4
	3.1.		
	3.1.	.2 Prioritisation of River Resource Units	6
	3.1.	.3 River Priority Resource Units	6
	3.1.	.4 Ecological Condition of the river Resource Units	6
	3.2	Dam Resource Unit Prioritisation	23
	3.2.	.1 Criteria and rationale for Dam Resource Prioritisation	23
	3.3	Dam Resource Unit Prioritisation	24
	3.3.	-11 7. 3	
	3.3.	11	
	3.3.	.3 Dam Prioritisation – Nzhelele /Nwanedi Resource Units	27
	3.3.	.4 Dam Prioritisation – Luvuvhu / Mutale Resource Units	30
	3.4	Wetland Resource Unit Prioritisation	
	3.4.		
	3.4.		
	3.4.		
	3.4.	.4 Wetland Priority Resource Units	46
	3.5	Groundwater Resource Unit Prioritisation	
	3.5.	.1 Groundwater Priority Resource Units	50
	3.6	Priority Resource Units in each IUA	54
4	API	PROACH TO SUB-COMPONENT PRIORITISATION AND INDICATOR	SELECTION
O'	VERV	'IEW	56
	4.1	River sub-component prioritisation and indicator selection	56

EVALUATION OF RESOURCE UNIT REPORT - FINAL

4.1.1	Selected user sub-components and indicators for rivers	59
4.2 Da	am sub-component prioritisation and indicator selection	67
4.2.1	Selected user sub-components and indicators for dams	67
4.3 W	etland sub-component prioritisation and indicator selection	69
4.3.1	Selected user sub-components and indicators for wetlands	70
4.4 Gr	roundwater sub-component prioritisation and indicator selection	78
5 CONC	LUSION	85
6 REFEF	RENCES	86
APPENDIX	X A	87
APPENDIX	ß	90

LIST OF FIGURES

Figure 1-1. Map of the study area, showing the Water Resource Class of the IUAs and the de	lineated
Resource Units	2
Figure 2-1. Seven-step RQO process	3
Figure 3-1. Relative priority of river resource units (Red is high priority, orange is medium prio	rity and
light blue is low priority for setting RQOs)	18
Figure 3-2. Prioritised dams in the study area	35
Figure 3-3. Illustration of the sub-steps for the process of RQO determination (narrative and nu	merical;
after DWS, 2016)	37
Figure 3-4. Wetlands within the study area showing distribution of different HGM types (2018 u	updated
wetland map 5) and secondary catchments.	38
Figure 3-5. Summary of the process to identify high-priority wetlands	39
Figure 3-6. Wetland priority per SQ	39
Figure 3-7. Map of the study area showing IUAs (outlined in red) and RUs (outlined in grey)	46
Figure 3-8. Map of study area showing prioritised groundwater units	51

August 2025 XXXI

LIST OF TABLES

Table 3-1. Delineation of the IUAs and river Resource Units	4
Table 3-2. Criteria used in the RU prioritisation process	7
Table 3-3. River RU prioritisation (rows in bold are existing EWR sites)	11
Table 3-3. Motivation for high priority river resource units	15
Table 3-4. Summary of ecological condition for the River Resource Units (rows in bold=field ve	rification
of ecological condition)	19
Table 3-5. Criteria use to assess the prioritisation of dams	23
Table 3-6. Resource unit priority scores for dams in the Upper Nyl/Sterk and Mogalakwena	IUAs.25
Table 3-7. Resource unit priority scores for dams in the Upper and Lower Sand River IUAs.	26
Table 3-8. Resource unit priority scores for dams in the Nzhelele / Nwanedi River IUAs	28
Table 3-9. Resource unit priority scores for dams in the Luvhuvhu / Mutale River IUAs	31
Table 3-10. Priority dams in the study area	34
Table 3-11. Summary of wetland properties and priority at the SQ scale. PES, EI and ES ca	tegories
represent the dominant state of all wetlands within each SQ. (Priority is from Very Low $-$ 1 $-$	to Very
High – 4).	40
Table 3-12. Count of SQs with different levels of wetland priority (1-4) per IUA and RU within re	spective
IUAs	47
Table 3-13. Criteria and sub-criteria used to prioritise groundwater resource units, showing the	ne rating
applied (following DWA, 2011)	49
Table 3-14. Prioritised groundwater units based on criteria scores and ratings	
Table 3-15. Priority resource units in the study area	
Table 4-1. Generic river sub-components, indicators and reasons for selection	
Table 4-2. Sub-components and indicators proposed for the high priority river resource units	
Table 4-3. Sub-components and indicators proposed for the medium priority river resource unit	
Table 4-4. Generic components, subcomponents and indicators for dams	
Table 4-5. Example of an operating rule for dams	
Table 4-6. Components, sub-components and indicators proposed for each of the high priorit	
Table 4-7. Generic list of components, sub-components and indicators that are generally imp	ortant to
most wetlands.	69
Table 4-8. Summary of infield verification of high priority wetlands	71
Table 4-9. Components, sub-components and indicators proposed for each of the high priority v	vetlands
	71
Table 4-10. Selected user sub-components and indicators for groundwater	79
Table 4-11. Sub-component and indicator selection for prioritised quaternary catchments	80
Appendix A 1. River Resource Unit Prioritisation Part 1	88
Appendix A 2. River Resource Unit Prioritisation – Part 2	89
Appendix B 3. River Resource Unit Evaluation	91

August 2025 XXXIII

1 INTRODUCTION

1.1 Background

The Department of Water and Sanitation (DWS), Chief Directorate (CD): Water Ecosystems Management (WEM) initiated a study to determine Water Resource Classes, the Reserve and Resource Quality Objectives for Secondary Catchments A5-A9 in the Limpopo Water Management Area (WMA 1) and Secondary Catchment B9 in the Olifants Water Management Area (WMA 2).

The suite of Resource Directed Measures tools being implemented in these catchments aims to ensure sustainable utilisation of water resources to meet the ecological, social and economic needs of the communities dependent on them.

1.2 Objectives of the Study

The overall objective of this project is to classify and determine the Reserve and Resource Quality Objectives for all significant water resources in the Secondary catchments (A5-A9) of the Limpopo WMA and B9 in the Olifants WMA.

The Scope of Work as stipulated in the Terms of Reference calls for the following:

- Coordinate the implementation of the Water Resources Classification System, as required in Regulation 810 in Government Gazette 33541, by classifying all significant water resources in the Limpopo WMA (secondary catchments A5-A9) and Olifants WMA (secondary catchment B9).
- Determine the water quantity and quality components of the groundwater and surface water (rivers and wetlands) Reserve.
- Determine Resource Quality Objectives (RQOs) using the DWS Procedures to Determine and Implement RQOs.

1.3 Study area

The study area is the Secondary catchments (A5-A9) of the Limpopo WMA and B9 in the Olifants WMA (Figure 1-1). During the Classification process the study area was delineated into Integrated Units of Analysis (IUAs) and the rivers, groundwater and wetlands were delineated into Resource Units (RUs). Figure 1-1 shows the Water Resource Class of the IUAs and the the delineated resource units. The Target Ecological Category of each river resource unit is indicated in Figure 1-1.

1.4 Purpose of this report

This report outlines the prioritisation of the delineated resource units for rivers, dams, wetlands and groundwater resources in the study area and details the water resource sub-components and indicators that will go forward to the development of RQOs. These outputs align to the Steps 3 and 4 of the RQO process shown in Figure 2-1.

August 2025 1

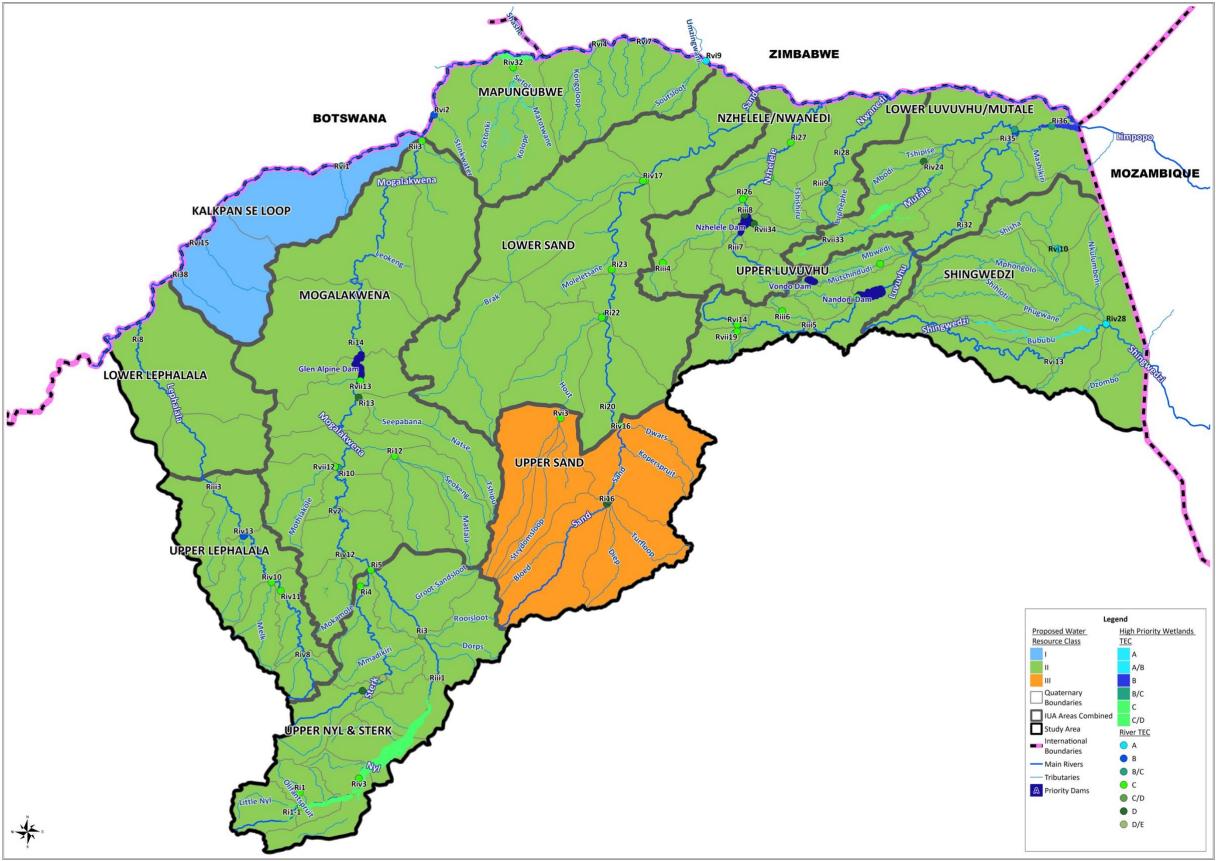


Figure 1-1. Map of the study area, showing the Water Resource Class of the IUAs and the delineated Resource Units

August 2025 2

2 OVERVIEW OF THE RESOURCE QUALITY OBJECTIVE PROCESS

Resource Quality Objectives (RQOs) are numerical and/or descriptive statements about the biological, chemical and physical attributes that characterise a resource for a level of protection defined by its Water Resource Class. They are important management objectives that represent a goal for a desired protection toward which management can be directed. It therefore aids in providing guidance on what activities and impacts are acceptable or not. RQOs provide a baseline for measuring the success of management and for reviewing the effectiveness of source directed controls and regulatory activities.

The development of the RQOs is a seven-step process (Figure 2-1) established by the DWA (2011).

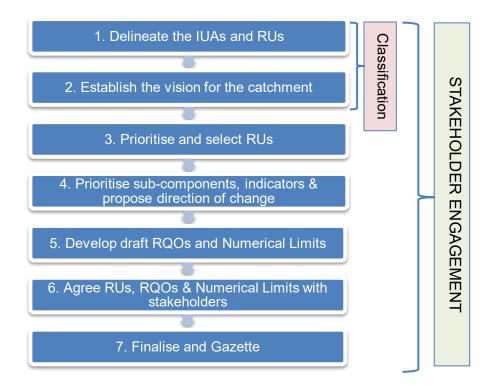


Figure 2-1. Seven-step RQO process

Step 1 of the RQOs process, is to delineate the Integrated Units of Analysis (IUA) and define the Resource Units (RUs). This is required to facilitate effective management of the water resource. Step 2 of the process is to establish a vision for the catchment. Steps 1 and 2 were completed during the Classification phase of the study.

The objective of Step 3 is to prioritise and select the most useful RUs for RQO determination. Many RUs were delineated in the study area, however in reality it is not practical nor feasible to monitor every RU in the study area. A rationalisation process using the Resource Unit Prioritisation Tool (RUPT), which is a decision support tool, was used to guide the selection process (DWA, 2011).

The RUPT is used to assess a range of criteria that would indicate the importance of monitoring each RU as part of management operations. This would include the position of RUs within an IUA, user and ecological considerations, practical constraints and management considerations. For the dam, wetland and groundwater prioritisation process the RUPT tool was modified to address current limitations in the methodology. The specific approaches to prioritise the water resources within the study area, are discussed in the sections that follow.

Step 4 of the RQO process has two key objectives: (i) to identify and prioritise sub-components that may be important to either users or the environment and (ii) to select those sub-components and associated indicators for which RQOs and Numerical Limits should be developed. This step bears relevance to the consideration of the impacts of land-based activities on the water resource.

Although there is a wide range of sub-components for which RQOs can be set, it is not necessary or practical to set RQOs for all sub-components in all selected RUs. A rationalisation process was therefore undertaken to evaluate and prioritise sub-components for RQO determination, using the Resource Unit Evaluation Tool (DWA, 2011).

Step 5 is to develop the draft RQOs and Numerical Limits for the prioritised RUs which may relate to all or some of the components of the water resource, including quantity, quality, habitat and biota. These RQOs are then published by way of government notice in the government gazette in Step 7.

Engagement with stakeholders is important in the RQO process to encourage the ownership of the decisions taken in selecting the RUs, indicators, RQOs and Numerical Limits for future monitoring and management of the water resources in the study area.

3 RESOURCE UNIT PRIORITISATION

3.1 River Resource Unit Prioritisation

3.1.1 Delineation of IUAs and River Resource Units

The delineation of the IUAs and the river RUs have been undertaken in the Classification and EWR phase of the study. The outcome of the delineation process is provided in Table 3-1. More detail on the process is provided in DWS, 2022.

Table 3-1. Delineation of the IUAs and river Resource Units

IUA name	River Resource Units	Quaternary catchments
Upper Lephalala	RRU-Riv8 - A50A-00354 RRU-Riv11 - A50B-00262 RRU-Riv10 - A50C-00273 RRU-Riv13 - A50D-00237 RRU-Riii3 - A50H-00110	A50A, A50B, A50C, A50D, A50E, A50F
Lower Lephalala	RRU-Ri8 – A50H-00110	A50G, A50H
Kalkpan se Loop	RRU-Ri38 – A50J-00073 RRU-Rvi15 – A50J-00061 RRU-Rvi1 – A63C-00033	A50J,A63C
Upper Nyl & Sterk	RRU-Rvii4 - A61H-00395 RRU-Rv1 - A61H-00395 RRU-Ri4 - A61J-00267 RRU-Ri1 - A61B-00489 RRU-Ri1-1 - A61B-00552 RRU-Riv3 - A61C-00501 RRU-Riii1 - A61E-00386 RRU-Ri3 - A61G-00297 RRU-Ri5 - A61G-00248	A61A, A61B, A61C, A61D, A61E, A61F, A61G, A61H, A61J

IUA name	River Resource Units	Quaternary catchments
Mogalakwena	RRU-Riv12 - A62B-00223 RRU-Ri6 - A62A-00253 RRU-Rv2 - A62B-00188 RRU-Rvii12 - A62D-00179 RRU-Ri10 - A62C-00188 RRU-Ri12 - A62G-00167 RRU-Ri13 - A62H-00148 RRU-Rvii13 - A62J-00143 RRU-Ri14 - A63A-00071 RRU-Rii3 - A63D-00034	A62A, A62B, A62C, A62D, A62E, A62F, A62G, A62H, A62J, A63A, A63B, A63D
Mapungubwe	RRU-Rvi2 - A63E-00011 RRU-Riv32 - A63E-00008 RRU-Rvi4 - A71L-00005 RRU-Rvi7 - A71L-00003 RRU-Rvi9 - A71L-00015	A63E, A71L
Upper Sand	RRU-Rvi3 - A71G-00131 RRU-Ri21 - A71G-00107 RRU-Ri16 - A71A-00211 RRU-Ri17 - A71B-00214 RRU-Riv16 - A71C-00156	A71A, A71B, A71C, A71E, A71F
Lower Sand	RRU-Ri20 - A71D-00118 RRU-Ri22 - A71D-00118 RRU-Ri23 - A71H-00088 RRU-Ri24 - A71J-00055 RRU-Riv17 - A72B-00038 RRU-Ri25 - A71K-00019	A71D, A71G, A71H, A71J, A71K, A72A, A72B
Nzhelele/Ńwanedi	RRU-Riii4 - A80D-00075 RRU-Riv23 - A80F-00063 RRU-Riii7 - A80B-00069 RRU-Rvii34 - A80C-00068 RRU-Riii8 - A80F-00068 RRU-Ri26 - A80G-00053 RRU-Riv33 - A80G-00054 RRU-Ri27 - A80G-00026 RRU-Riii9 - A80H-00064 RRU-Riii10 - A80H-00060 RRU-Ri28 - A80J-00028	A80A, A80B, A80C, A80D, A80E, A80F, A80G, A80H, A80J
Upper Luvuvhu	RRU-Rvi14 - A91A-00105 RRU-Rvii19 - A91B-00120 RRU-Riii5 - A91C-00115 RRU-Riii6 - A91D-00108 RRU-Riv18 - A91E-00103 RRU-Riv19 - A91F-00111 RRU-Rvii24 - A91F-00093 RRU-Ri30 - A91G-00091	A91A, A91B, A91C, A91D, A91E, A91F, A91G
Lower Luvuvhu/Mutale	RRU-Ri32 - A91H-00045 RRU-Rvii33 - A92B-00051 RRU-Ri33 - A92B-00051 RRU-Riv24 - A92C-00049 RRU-Ri34 - A92D-00030 RRU-Ri35 - A91J-00040 RRU-Ri36 - A91K-00035	A91H, A91J, A91K, A92A, A92B, A92C, A92D

IUA name	River Resource Units	Quaternary catchments
Shingwedzi	RRU-Rvi10 - B90D-00067 RRU-Riv28 - B90H-00113 RRU-Rvi13 - B90F-00114 RRU-Riv27 - B90G-00124 RRU-Ri37 - B90H-00145	B90A, B90B, B90C, B90D, B90E, B90F, B90G, B90J

3.1.2 Prioritisation of River Resource Units

Seventy-five (75) river RUs were delineated across the study area. These were prioritised using the RUPT to provide a manageable number of important resource units for which RQOs need to be set and monitored.

The prioritisation of the river resource units were based on (i) position of the resource unit within an IUA; (ii) importance of the resource unit to users; (iii) threats posed to users by current or planned future activities in the resource unit, (iv) the ecological importance of the resource unit; (v) threats faced by the ecological component of the resource unit; (vi) resource units where management actions should be prioritised; and (vii) practical considerations of determining and monitoring RQOs. The criteria used in the assessment are outlined in Table 3-2.

The Tool's standard scoring and ranking of scores were used for the comparison between RUs. The scores given to the RUs to rank them to one another are provided in Appendix A 1 and Appendix A 2.

3.1.3 River Priority Resource Units

The RUs were prioritised in terms of the priority rating.

- A rating of 0.8-1.0 was given a high Priority = 1
- A rating of 0.4-0.7, was given a medium priority = 2
- A rating of <0.4, was given a low priority = 3.

The relative priority of the RUs and rationale for selection are shown in Table 3-3 and Figure 3-1. In the map the quaternary catchments in which the RUs were given the highest priority are those shown in red, medium priority RUs are shown in orange and those RUs that rated lower than 0.4 are shown in a light blue.

Thirty RUs were given a high priority and will be taken forward for development of RQOs. Table 3-4 records the reasons for the high priority rating. Twenty four RUs were given a medium priority and twenty one RUs rated at low priority.

3.1.4 Ecological Condition of the river Resource Units

The ecological condition of the river resource units are provided in Table 3-5. The ecological condition of the resource units in the highlighted rows have been field verified, while the ecological condition of the other river resource units are based on the 2011 PESEIS Desktop Spreadsheet Model.

Table 3-2. Criteria used in the RU prioritisation process

Criterion	Description and Reasoning	Ranking	Relative weighting	Sub-criteria	Rating Guideline
Position of resource unit within IUA	These are resource units associated with large mainstem rivers and located at the downstream end of an IUA and are located between socio-economic zones where user requirements are likely to differ. Such resource units also provide a useful surrogate for assessing whether or not management objectives (included gazetted IUA class) for the upstream catchment are being achieved since the cumulative effects of upstream impacts are likely to be expressed at this reach.	1	100	Resource units located on a large mainstem river at the downstream end of an IUA (IUA outlet node)	1 - Resource unit on mainstem river and at base of IUA 0 - RUs not associated with keystone sites
				Resource units which provide important cultural services to society	0 - RUs with no known / limited provision of cultural services 0.5 - RUs providing some cultural services 1 - RUs providing very important or numerous cultural services
Importance for users	This criterion considers both the current and future use relevant to different users considerations	2	50	Resource units which are important in supporting livelihoods of significant vulnerable communities	O - RUs which do not support / provide limited support for vulnerable communities O.5 - RUs providing some support for vulnerable communities 1 - RUs playing an important role in supporting vulnerable communities
				Resource units which are important in meeting strategic requirements and international obligations	0 -RUs not used for strategic purposes or to meet international obligations 0.5 -RUs moderately important for strategic purposes or are somewhat useful for verifying compliance with international obligations 1 - RUs extremely important for strategic purposes or are ideally suited for verifying compliance with international obligations

August 2025

Criterion	Description and Reasoning	Ranking	Relative weighting	Sub-criteria	Rating Guideline
				Resource units that provide supporting and regulating services	O - RUs which supply limited supporting and regulating services O.5 - RUs which supply moderate supporting and regulating services 1 - RUs which supply extensive supporting and regulating services
				Resource units most important in supporting activities contributing to the economy (GDP & job creation) in the catchment (e.g. commercial agriculture, industrial abstractions and bulk abstractions by water authorities)	 0 - RUs which do not directly support any activities which contribute to the economy 0.5 - RUs which support activities which provide a moderate contribution to the economy 1 - RUs which support activities which contribute significantly to the economy
Threat posed to users	These are resource units which are important for users and are threatened or likely to be threatened by current or planned future activities (e.g. mines, towns, industries, dams, intensive agriculture) and should be monitored due to the potential risk poses to users. Emphasis is placed on selecting those resource units most likely to be impacted by high risk activities and which could therefore have serious implications for users if not effectively managed.	2	50	Level of threat posed to users	O - RUs where potential threat to users is low O.5 - RUs where potential threat to users is moderate 1 - RUs where potential threat to users is high
Ecological Importance	This criterion is assessed to identify resource units that are important from an ecological perspective. A range of attributes relative to the water resource	2	50	Resource units with a high or very high EIS category	 0 - RUs with a low or moderate EIS Category 0.5 - RUs with a high EIS Category 1 - RUs with a very high EIS Category 0 - RUs with a PES or NEC lower than a B
	are considered.			Resource units which have an A/B NEC and / or PES	Category 0.5 - RUs with a PES or NEC lower than a B Category

Criterion	Description and Reasoning	Ranking	Relative weighting	Sub-criteria	Rating Guideline
					1 - RUs with a PES or NEC in an A or A/B Category
				Resource units identified as National Freshwater Ecosystem Priority Areas	O - RUs which do not identify as a priority area O.5 - RUs located within 'Freshwater Ecosystem Support Areas' RUs located within 'Freshwater Ecosystem
				Resource units identified as a priority in provincial / fine scale aquatic biodiversity plans	Priority Areas' 0 - RUs with a low irreplaceability value (0 - 0.5) 0.5 - RUs with a moderate Irreplaceability value (0.51 - 0.99) or located within identified 'Ecological Support Areas' 1 - RUs which are irreplaceable (IR = 1) or are located within 'Critical Biodiversity Areas'.
Threat faced by ecological component of the RU	This criterion is assessed to identify resource units which are threatened or are likely to be threatened by current or future activities that should be monitored due to the risk posed to the ecological elements of the water resource. This considers those RUs most likely to be impacted by high risk activities.	2	50	Level of threat posed to ecological components of the resource unit	O - RUs where potential threat to ecological components is low O.5 - RUs where potential threat to ecological components is moderate 1 - RUs where potential threat to ecological components is high
Management Considerations	This criterion requires the assessment of RUs where management actions should be prioritised. This applies to RUs or reaches where it is necessary to monitor the effectiveness of measures implemented to improve status quo.	2	50	Resource units with PES lower than a D Category or lower than the accepted gazetted category (NEC)	O - RUs with a PES higher than a C Category or a PES higher than the NEC 1 - RUs with a PES lower than a C Category or a PES lower than the NEC
Practical Considerations	This criterion looks at the practical considerations of determining and monitoring RQOs	2	50	Availability of EWR site data or other monitoring data(RHP, DWS gauging weirs etc) located within the reach	O - RUs where no resource quality information exists O.5 - RUs for which a moderate level of resource quality information exists

EVALUATION OF RESOURCE UNIT REPORT - FINAL

Criterion	Description and Reasoning	Ranking	Relative weighting	Sub-criteria	Rating Guideline
					1 - RUs for which there is a good availability of resource quality information
					0 - RUs with very poor accessibility
				Accessibility of resource unit for monitoring	0.5 - RUs with moderate accessibility
					1 - RUs with good accessibility
					0 - RUs which are not safe to monitor
				Safety risk associated with monitoring resource units.	0.5 - RUs where safety is questionable
					1 - RUs where safety is not a concern

Table 3-3. River RU prioritisation (rows in bold are existing EWR sites)

Water Resource	River			Sting EWR site	Criteria Criteria	Position in IUA	Concern for users	Concern for environment	Management and practical considerations	Total Prioritization	Priority	Priority	Comment	
Class	Unit	Noue	quaternary reach	Rivei	Ranking	1	2	2	2	Score	Rating	Phonty	isinsy Commont	
					Relative weighting	100	50	50	50					
		<u> </u>		1	T		Upper Lep	halala IUA	<u> </u>	T			Downstra are of the Lordestella and	
II	RRU-Riv8	Riv8	A50A-00354	Lephalala		0.00	0.12	0.20	0.10	0.42	0.6	2	Downstream of the Lephalala and Rietbokvleispruit. Captures the impacts of agriculture. Good ecological condition of a B category	
II	RRU-Riv11	Riv11	A50B-00262	Lephalala		0.25	0.06	0.16	0.13	0.59	0.8	1	Main river, accessible. Represents RU in the IUA	
II	RRU-Riv10	Riv10	A50C-00273	Melk		0.00	0.05	0.08	0.05	0.17	0.2	3	On the Melk Rivier a tributary of the Lephalala	
II	RRU-Riv13	Riv13	A50D-00237	Boklandspruit		0.00	0.05	0.11	0.13	0.28	0.4	2	On the Boklandspruit, a tributary of the Lephalala. Good ecological condition.	
II	RRU-Riii3	Riii3	A50H-00110	Lephalala		0.25	0.06	0.17	0.21	0.69	1.0	1	Close to outlet of the Upper Lephalala IUA.	
					l			halala IUA		<u> </u>			At outlet of IUA. Strategic management of	
II	RRU-Ri8	Ri8	A50H-00110	Lephalala		0.25	0.06	0.17	0.21	0.69	1.0	1	international obligations	
		I		Kalkpan Se	l			Loop IUA	<u> </u>	<u> </u>			At outlet of catchment, however very limited	
I	RRU-Ri38	Ri38	A50J-00073	Loop		0.25	0.02	0.15	0.07	0.49	0.7	2	development and impact in the catchment	
I	RRU-Rvi15	Rvi15	A50J-00061	No Name		0.25	0.02	0.15	0.07	0.49	0.7	2	At outlet of catchment, however very limited development and impact in the catchment	
I	RRU-Rvi1	Rvi1	A63C-00033	Rietfontein		0.25	0.12	0.15	0.10	0.62	0.9	1	At outlet of IUA. Representative of other reaches in the IUA.	
							Upper Nyl	/Sterk IUA						
II	RRU-Rvii4	Rvii4	A61H-00395	Sterk		0.00	0.07	0.19	0.20	0.45	0.6	2	Captures the effects of upstream development before the Sterk River enters the Doorndraai Dam. Currently in a D ecological category	
II	RRU-Rv1	Rv1	A61H-00395	Sterk		0.00	0.07	0.19	0.20	0.45	0.6	2	Downstream of Doorndraai Dam	
II	RRU-Ri4	Ri4	A61J-00267	Sterk		0.25	0.10	0.13	0.20	0.67	0.9	1	On the Sterk River upstream of the confluence with the Mogalakwena River. Captures the effects of the upstream land use activities. Target to remain in a C ecological category. Important to monitor site	
II	RRU-Ri1	Ri1	A61B-00489	Olifantspruit		0.00	0.17	0.14	0.25	0.56	0.8	1	Represents inflow to the Ramsar declared Nylsvley wetland. Possible future development	
II	RRU-Ri1-1	Ri1-1	A61B-00552	Nyl		0.00	0.17	0.14	0.25	0.56	0.8	1	Inflow to the Nyl floodplain and the Nylsvlei Ramsar site. Possible future development	
II	RRU-Riv3	Riv3	A61C-00501	Nyl		0.00	0.19	0.19	0.05	0.43	0.6	2	Below the Nylsvley Nature Reserve, upstream of the confluence with Badseloop	
II	RRU-Riii1	Riii1	A61E-00386	Nyl		0.00	0.08	0.11	0.20	0.39	0.5	2	Before the confluence to form the Mogalakwena. Reach is in a D ecological category	
II	RRU-Ri3	Ri3	A61G-00297	Mogalakwena		0.25	0.08	0.18	0.19	0.70	1.0	1	Middle of IUA, downstream of urban area and 2 significant tributaries, at outlet of A61F catchment. Good point to monitor upstream impacts.	
II	RRU-Ri5	Ri5	A61G-00248	Upper Mogalakwena		0.25	0.08	0.18	0.19	0.70	1.0	1	Outlet of IUA	
						1	Mogalak	wena IUA						
II	RRU-Riv12	Riv12	A62B-00223	Mogalakwena		0.00	0.06	0.09	0.09	0.25	0.3	3	Situated in the upper reaches of the IUA. Minimal impact.	
II	RRU-Ri6	Ri6	A62A-00253	Mokamole		0.00	0.05	0.11	0.19	0.35	0.5	2	On a tributary of the Mogalakwena. EC in a D category	
II	RRU-Rv2	Rv2	A62B-00188	Mogalakwena		0.00	0.06	0.09	0.09	0.25	0.3	3	At outlet of A62B in an urban area	
II	RRU-Rvii12	Rvii12	A62D-00179	Klein Mogalakwena		0.00	0.03	0.13	0.07	0.22	0.3	3	On a tributary of the Mogalakwena.	
II	RRU-Ri10	Ri10	A62C-00188	Mogalakwena		0.00	0.04	0.13	0.07	0.24	0.3	3	On the Mogalakwena upstream of the confluence with the Klein Mogalakwena	

Water	River Resource	Node	Sub-	River	Criteria Criteria	Position in IUA	Concern for users	Concern for environment	Management and practical considerations	Total Prioritization	Priority	Priority	Comment
Resource Class	Unit	Node	quaternary reach	River	Ranking	1	2	2	2	Score	Rating	Phonty	Comment
					Relative weighting	100	50	50	50				
II	RRU-Ri12	Ri12	A62G-00167	Matlalane		0.00	0.05	0.16	0.04	0.24	0.3	3	On a tributary of the Mogalakwena.
<u>II</u>	RRU-Ri13	Ri13	A62H-00148	Seepabana		0.00	0.03	0.11	0.19	0.34	0.5	2	On a tributary of the Mogalakwena.
II	RRU-Rvii13	Rvii13	A62J-00143	Mogalakwena		0.00	0.05	0.11	0.06	0.23	0.3	3	Upstream of Glen Alpine Dam
II	RRU-Ri14	Ri14	A63A-00071	Middle Mogalakwena		0.25	0.16	0.16	0.13	0.70	1.0	1	. Key site for monitoring downstream of Glen Alpine Dam. Representative of site and accessible.
II	RRU-Rii3	Rii3	A63D-00034	Mogalakwena		0.25	0.13	0.10	0.25	0.72	1.0	1	At outlet of IUA. Strategic - management of international obligations
							Mapungu	ibwe IUA					
II	RRU-Rvi2	Rvi2	A63E-00011	Stinkwater		0.25	0.13	0.20	0.13	0.71	1.0	1	At outlet of catchment, however very limited development and impact in the catchment.
		D . 00					0.40		0.40				Important site in the Reserve. Outlet of IUA. Within the Mapungubwe
II	RRU-Riv32	Riv32	A63E-00008	Kolope		0.25	0.13	0.20	0.13	0.71	1.0	1	National Park. Main system in IUA
II	RRU-Rvi4	Rvi4	A71L-00005	Kongoloop		0.00	0.11	0.14	0.09	0.34	0.5	2	At outllet of A71L, which flows through agricultural area
II	RRU-Rvi7	Rvi7	A71L-00003	No Name		0.00	0.11	0.14	0.09	0.34	0.5	2	At outllet of A71L, which flows through natural area
II	RRU-Rvi9	Rvi9	A71L-00015	Soutsloot		0.00	0.11	0.14	0.09	0.34	0.5	2	At outllet of A71L, which flows through the Maremani Nature Reserve
							Upper Sa	and IUA					
II	RRU-Rvi3	Rvi3	A71G-00131	Hout		0.00	0.04	0.11	0.04	0.19	0.2	3	On a tributary of the Sand that flows through agricultural lands
II	RRU-Ri21	Ri21	A71G-00107	Hout		0.00	0.04	0.11	0.04	0.19	0.2	3	Tributary of Sand before the confluence. Flows through agricultural land
III	RRU-Ri16	Ri16	A71A-00211	Sand		0.00	0.13	0.18	0.18	0.48	0.7	2	Sand River upstream of the confluence with the Diep. Flows through agricultural land
III	RRU-Ri17	Ri17	A71B-00214	Diep		0.00	0.05	0.18	0.18	0.40	0.6	2	Diep River upstream of confluenc with the Sand River
III	RRU-Riv16	Riv16	A71C-00156	Dwars		0.25	0.10	0.18	0.04	0.56	0.8	1	Lower Dwars, before confluence with Sand River and outlet of the Upper Sand IUA. Assess the effects of development along the Dwars River. Potential future development.
							Lower S	and IUA			T		0 11 (5 11 14 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1
III	RRU-Ri20	Ri20	A71D-00118	Sand		0.25	0.17	0.14	0.13	0.69	0.8	1	Outlet of IUA. Below confluence of Sand and Dwars. Downstream of all impacts in the Upper Sand IUA. Representative of Sand River. Downstream of town
III	RRU-Ri22	Ri22	A71D-00118	Sand		0.25	0.17	0.14	0.13	0.69	0.8	1	At the outlet of the A71D catchment, upstream of the confluence with the Hout River
II	RRU-Ri23	Ri23	A71H-00088	Sand		0.00	0.08	0.19	0.09	0.36	0.4	2	Flows through nature reserves.
II	RRU-Ri24	Ri24	A71J-00055	Sand		0.00	0.04	0.13	0.10	0.27	0.3	3	Upstream of confluence with the Brak. Flows through old agricultural fields
II	RRU-Riv17	Riv17	A72B-00038	Brak		0.00	0.02	0.11	0.08	0.21	0.3	3	Lower Brak before confluence with the Brak, which flows through old agricultural land
II	RRU-Ri25	Ri25	A71K-00019	Sand		0.25	0.20	0.13	0.13	0.70	0.8	1	At outlet of IUA. Strategic - management of international obligations. Potential Future development.
	DDI SW		1 4 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1	1		Nzhelele and			0.10			
<u> </u>	RRU-Riii4	Riii4	A80D-00075	Mutamba		0.00	0.02	0.06	0.03	0.12	0.1	3	Upper Mutamba. Minimal landuse impacts
II	RRU-Riv23	Riv23	A80F-00063	Mutamba		0.00	0.04	0.11	0.09	0.24	0.3	3	Mutamba before confluence with the Nzhelele. Flows through agricultural lands
II	RRU-Riii7	Riii7	A80B-00069	Nzhelele		0.00	0.13	0.17	0.18	0.48	0.6	2	Flows through a natural area upstream of Nzhelele Dam.
<u> </u>	RRU-Rvii34	Rvii34	A80C-00068	Mafungudi		0.00	0.13	0.21	0.06	0.40	0.5	2	Inflow into Nzhelele Dam
II	RRU-Riii8	Riii8	A80F-00068	Nzhelele		0.00	0.04	0.11	0.09	0.24	0.3	3	Immediately downstream of Nzhelele Dam

Water	River		Sub-		Criteria	Position in IUA	Concern for users	Concern for environment	Management and practical considerations		Priority		
Resource Class	Resource Unit	Node	quaternary reach	River	Criteria Ranking	1	2	2	2	Prioritization Score	Rating	Priority	Comment
					Relative weighting	100	50	50	50				
II	RRU-Ri26	Ri26	A80G-00053	Nzhelele	roignang	0.25	0.15	0.19	0.13	0.72	0.9	1	Downstream of the Nzhelele Dam and the confluence of the Nzhelele and Mutamba Rivers. Important monitoring site for future development on the Mutamba and Nzhelele Rivers
II	RRU-Riv33	Riv33	A80G-00054	Tshishiru		0.25	0.15	0.19	0.13	0.72	0.9	1	On the lower Tshishiru before the confluemce with the Nzhelele River, below site of potential developments. Record flow contribution to the Nzhelele River
II	RRU-Ri27	Ri27	A80G-00026	Nzhelele		0.25	0.15	0.19	0.13	0.72	0.9	1	Outlet of IUA. Strategic - international obligations
II	RRU-Riii9	Riii9	A80H-00064	Йwanedi		0.00	0.06	0.17	0.09	0.33	0.4	2	At outlet of Nwanedi Reservoir
II	RRU-Riii10	Riii10	A80H-00060	Luphephe		0.00	0.06	0.17	0.09	0.33	0.4	2	At outlet of Luphephe Reservoir
b	RRU-Ri28	Ri28	A80J-00028	Nwanedi		0.25	0.11	0.20	0.13	0.68	8.0	1	Outlet of IUA. Strategic - international obligations. Potential future development
							Upper Luv	vuvhu IUA					obligations: I otolitial fatare development
II	RRU-Rvi14	Rvi14	A91A-00105	Luvuvhu		0.00	0.11	0.13	0.04	0.27	0.3	3	Inflow to Albasini Dam
II	RRU-Rvii19	Rvii19	A91B-00120	Doringspruit		0.00	0.11	0.17	0.22	0.50	0.6	2	Inflow to Albasini Dam Luvuvhu River just upstream of the
II	RRU-Riii5	Riii5	A91C-00115	Luvuvhu		0.00	0.19	0.17	0.06	0.43	0.5	2	confluence with the Latonyanda, Flows through agricultural lands
II	RRU-Riii6	Riii6	A91D-00108	Latonyanda		0.00	0.24	0.20	0.24	0.68	0.8	1	At lower Latonyanda before confluence with Luvuvhu. Flows through agricultural area. Important resource unit to users and environment. At outlet of A91D. Will provide information on land use impacts of the Latonyanda on the Luvuvhu River
II	RRU-Riv18	Riv18	A91E-00103	Dzindi		0.00	0.08	0.19	0.22	0.48	0.6	2	Downstream of urban area. Upstream of the confluence of the Dzindi and Luvuvhu Rivers before it flows into the Nandoni Dam. Important for domestic use. Poor ecological condition that should not deteriorate
II	RRU-Riv19	Riv19	A91F-00111	Luvuvhu		0.00	0.06	0.13	0.09	0.28	0.3	3	Downstream of urban areas before the inflow into Nandoni Dam
11	RRU-Rvii24	Rvii24	A91F-00093	Luvuvhu		0.00	0.06	0.13	0.09	0.28	0.3	3	Downstream of Nandoni Dam
II	RRU-Ri30	Ri30	A91G-00091	Mutshindudi		0.25	0.25	0.20	0.13	0.83	1.0	1	Representative of inflows to Luvuvhu
							Lower Luvuvh	u / Mutale IUA					downstream of Nandoni Dam.
II	RRU-Ri32	Ri32	A91H-00045	Luvuvhu		0.25	0.15	0.21	0.09	0.70	0.8	1	Outlet of IUA. On main river, contribution to Ramsar site
II	RRU-Rvii33	Rvii33	A92B-00051	Mutale		0.25	0.16	0.16	0.13	0.69	0.8	1	On the upper Mutale River, downstream of Lake Fundudzi and upstream of the settlements. Important for monitoring proposed development of Rambuda Dam.
II	RRU-Ri33	Ri33	A92B-00051	Middle Mutale		0.25	0.16	0.16	0.13	0.69	0.8	1	Outlet of IUA. Main river, contribution to Ramsar site
II	RRU-Riv24	Riv24	A92C-00049	Mbodi		0.00	0.07	0.10	0.04	0.20	0.2	3	Representative of the Mbodi River. Minimal negative impacts.
II	RRU-Ri34	Ri34	A92D-00030	Lower Mutale		0.25	0.23	0.21	0.13	0.81	1.0	1	At outlet of IUA. Strategic - management of international obligations, contribution to Ramsar site
II	RRU-Ri35	Ri35	A91J-00040	Luvuvhu		0.00	0.05	0.10	0.04	0.18	0.2	3	Luvuvhu before the confluence with the Mutale.
II	RRU-Ri36	Ri36	A91K-00035	Luvuvhu		0.25	0.17	0.23	0.10	0.75	0.9	1	At outlet of IUA. Strategic - management of international obligations, contribution to Ramsar site
	DDI	D :40	D00D 0000=	01::		0.00	Shingwedz		0.05	0.47		_	
II	RRU-Rvi10	Rvi10	B90D-00067	Shisha		0.00	0.12	0.00	0.05	0.17	0.2	3	Flows through natural area

EVALUATION OF RESOURCE UNIT REPORT - FINAL

Water	er River Sub-		Sub-		Criteria	Position in IUA	Concern for users	Concern for environment	Management and practical considerations	Total	Dringity		
Resource Class	Resource Unit	Node	quaternary reach	River	Criteria Ranking	1	2	2	2	Prioritization Score	Priority Rating	Priority	Comment
					Relative weighting	100	50	50	50				
II	RRU-Riv28	Riv28	B90H-00113	Mphongolo		0.25	0.13	0.20	0.07	0.66	0.8	1	On the downstream end of the Mphongola before the confluence with the Shingwedzi. Record contribution of flow and quality to the Shingwedzi before outlet of IUA. The reach is a Freshwater Ecosystem Priority Area
II	RRU-Rvi13	Rvi13	B90F-00114	Shingwedzi		0.00	0.15	0.11	0.06	0.32	0.4	2	Flows through natural area
II	RRU-Riv27	Riv27	B90G-00124	Shingwedzi		0.00	0.12	0.08	0.02	0.21	0.3	3	Upstream of the confluence with Mphongolo River. Natural area
II	RRU-Ri37	Ri37	B90H-00145	Shingwedzi		0.25	0.13	0.20	0.07	0.66	0.8	1	At outlet of IUA. Strategic - management of international obligations

Table 3-4. Motiva	tion for high prior	ity river resourc	e units.		
Water Resource Class	River Resource Unit	Node	Sub-quaternary reach	River	Reason for high priority rating of resource unit
			Unne	er Lephalala IUA	
II	RRU-Riv11	Riv11	A50B-00262	Lephalala	Resource unit, below the Melk tributary. Upstream of a number of private nature reserves. Provides extensive supporting and regulatory function, provides cultural services, supports activities which provide a moderate contribution to the economy, has a high EIS and located within a Freshwater ecosystem support area and Critical Biodiversity Area, has a good availability of resource quality information
II	RRU-Riii3	Riii3	A50H-00110	Lephalala	Resource uniton mainstem river and at base of IUA, provides some support for vulnerable communities, supports activities which have a moderate contribution to the economy, high EIS category, RU situated within a Critical Biodiversity Area.
	I	T	Lowe	er Lephalala IUA	Diller weight with a dethact of IIIA state in words of
II	RRU-Ri8	Ri8	A50H-00110	Lephalala	RU on mainstem river and at base of IUA, strategic management of international obligation provides some support for vulnerable communities, supports activities which have a moderate contribution to the economy, high EIS category, RU situated within a Critical Biodiversity Area.
1	RRU-Rvi1	Rvi1	A63C-00033	Rietfontein	At outlet of IUA. Representative of other reaches in the IUA. FEPA, PES = B, non-perennial. Only viable river in the IUA.
			Upp	er Nyl/Sterk IUA	TELA, TEO - B, Horr-perennial. Only viable fiver in the ToA.
II	RRU-Ri4	Ri4	A61J-00267	Sterk	On the Sterk River upstream of the confluence with the Mogalakwena River. Captures the effects of the upstream land use activities. Provides some cultural services, a moderate contribution to the economy, the potential threat to users is moderate, high EIS, within a freshwater ecosystem support area, in a Critical Biodiversity Area, the threat to ecological components is high
II	RRU-Ri1	Ri1	A61B-00489	Olifantspruit	A main tributary that flows into Nylsvley. RU provides some cultural services, moderate supporting and regulatory services, moderate contribution to the economy, has a high EIS, located within a freshwater ecosystem support area and Critical Biodiversity Area. Represents inflow to the Ramsar declared Nylsvley wetland. Possible future development
II	RRU-Ri1-1	Ri1-1	A61B-00552	Nyl	Inflow to the Nyl floodplain and the Nylsvlei Ramsar site. Possible future development. Upstream Management Area, PES = C. REMP site and a main tributary that flows into Nylsvley. RU provides some cultural services, moderate supporting and regulatory services, moderate contribution to the economy, has a high EIS, located within a freshwater ecosystem support area and Critical Biodiversity Area.
II	RRU-Ri3	Ri3	A61G-00297	Mogalakwena	Provides some cultural servicees, support to vulnerable communities, provide moderate contribution to the economy, potential threat to users is moderate, within a Critical Biodiversity Area, threat to ecological components is high. Valuable to monitor upstream impacts.
II	RRU-Ri5	Ri5	A61G-00248	Upper Mogalakwena	Resource unit on mainstem river and at base of IUA. Provides some cultural services, plays an important role in supporting vulnerable communities, supports activities which provie moderate contribution to the economy, located within a freshwater ecosystem support area, within a Critical Biodiversity Area, the threat to ecological component is high, PES is lower than a C category, Strategic Water Source Area. Drains dense settlements, the town of Mokopane and mining areas. Downstream of Sterk River confluence.
			Mo	galakwena IUA	
II	RRU-Ri14	Ri14	A63A-00071	Middle Mogalakwena	Downstream of Glen Alpine Dam. Dense rural settlements. Provides some cultural services, some support for vulnerable communities, provide a moderate contribution to the economy, high EIS category, within a Critical Biodiversity Area, potential threat to ecological components is moderate, PES lower than a C category, good availability of resource quality information
II	RRU-Rii3	Rii3	A63D-00034	Mogalakwena	Resource unit on the mainstem river and at base of IUA. Provides some cultural services, within a Critical Biodiversity Area, strategic management of international obligations
		I	Ma	pungubwe IUA	Provides some cultural services, strategicall important for
II	RRU-Rvi2	Rvi2	A63E-00011	Stinkwater	international obligations, support activities which contribute significantly to the economy, potential threat to users is moderate, RU with a PES in a B category, located within a freshwater ecosystem support area, within a Critical Biodiversity Area,
II	RRU-Riv32	Riv32	A63E-00008	Kolope	The largest of the three rivers in this IUA. Within the Mapungubwe National Park. Provides some cultural services, strategically important for international obligations, support activities which contribute significantly to the economy, potential threat to users is moderate, RU with a PES in a B category, located within a freshwater ecosystem support area, within a Critical Biodiversity Area, non-perennial
			Up	per Sand IUA	RU on the main tributary of the Sand and at the base of the IUA,
III	RRU-Riv16	Riv16	A71C-00156	Dwars	provides some cultural services, supports activities which contributes significantly to the economy, potential threat to users is moderate, located within a freshwater ecosystem support area, within a Critical Biodiversity Area, potential threat to ecological components is moderate, Good site for assessing the effects of development along the Dwars River. Potential future development in the system
			Lo	wer Sand IUA	Downstream of intensive dryland and irrigated agriculture, below the
III	RRU-Ri20	Ri20	A71D-00118	Sand	confluence of the Sand and Dwars and at the outlet of the Upper Sand IUA. Supports activities which contribute significantly to the economy, located within freshwater ecosystem support area and within Critical Biodiversity Area, threat to ecological components is moderate.
III	RRU-Ri22	Ri22	A71D-00118	Sand	Supports activities which contribute significantly to the economy, located within freshwater ecosystem support area and within Critical Biodiversity Area, threat to ecological components is moderate.

Water Resource Class	River Resource Unit	Node	Sub-quaternary reach	River	Reason for high priority rating of resource unit
II	RRU-Ri25	Ri25	A71K-00019	Sand e and Nwanedi IUA	Resource unit on mainstem river and at base of IUA, provides some cultural services, high EIS, with a PES of B, located within a Critical Biodiversity Area, threat to ecological components is high. Strategic purpose and for verifying compliance to international obligations. Potential future development.
II	RRU-Ri26	Ri26	A80G-00053	Nzhelele	Provides moderate contribution to the economy, high EIS category, potential threat to ecological components is moderate. Downstream of the Nzhelele Dam and the confluence of the Nzhelele and Mutamba Rivers. Important monitoring site for future development on the Mutamba and Nzhelele Rivers
II	RRU-Riv33	Riv33	A80G-00054	Tshishiru	Provides moderate contribution to the economy, high EIS category, potential threat to ecological components is moderate, below site of potential developments. Important site to record flow contribution to the Nzhelele River
II	RRU-Ri27	Ri27	A80G-00026	Nzhelele	Resource unit on mainstem river and at base of IUA, strategic - international obligations, provides some cultural services, provides moderate contribution to the economy, high EIS category, located within a Critical Biodiversity Area, potential threat to ecological components, strategic importance - contribution to international obligations, good quality resource information available It is situated on the lower reaches of Nzhelele and below the dams and irrigation agriculture. Upstream of the Vhembe Biosphere Reserve.
b	RRU-Ri28	Ri28	A80J-00028	Ńwanedi	Resource unit on mainstem river and at base of IUA, Strategic - international obligations. Potential future development, provides some cultural services, some support for vulnerable communities, moderate contribution to the economy, very high EIS ctegory, located within a freshwater ecosystem support area, within a Critical Biodiversity Area, potential threat to ecological component is moderate, PES lower than a C Category, Strategic Water Source Area (groundwater), FEPA - Fish Support Area, Good quality resource information available. Below Cross
			Upp	or Linguighti IIIA	Dam, upstream of the Vhembe Biosphere Reserve.
			— — Upp	er Luvuvhu IUA	Provides some cultural services, provides moderate supporting and
II	RRU-Riii6	Riii6	A91D-00108	Latonyanda	regulating services, supports a moderate contribution to the economy, very high EIS category, located within a freshwater ecosystem support area, within an identified ecological support area, potential threat to ecological components is high, PES lower than a C category, Strategic Water Source Area (groundwater), FEPA - Upstream Management Area, good quality resource information. A major tributary of the Luvuvhu River. Upstream of the intensive dryland
II	RRU-Ri30	Ri30	A91G-00091	Mutshindudi	and irrigated agriculture. RU on the main tributary to the mainstem, provides support for vulnerable communities, provides moderate contribution to the economy, high EIS, within a freshwater ecosystem support area, within a Critical Biodiversity Area, potential threat to ecological components is moderate, Strategic Water Source Area (groundwater), FEPA - Upstream Management Area. Major tributary of the Luvuvhu, downstream of Nandoni Dam.
			Lower L	uvuvhu / Mutale IUA	Resource unit on mainstem of river close to outlet of IUA.
II	RRU-Ri32	Ri32	A91H-00045	Luvuvhu	Contributes to the Ramsar site. Providing very important or numerous cultural services, provides some support for vulnerable communities, support activities which coribute significantly to the economy, high EIS category, located within freshwater ecosystem priority area, RU which are irreplaceable/within Critical Biodiversity Area.
II	RRU-Rvii33	Rvii33	A92B-00051	Mutale	Providing very important or numerous cultural services, plays an important role in supporting vulnerable comunities, supplies extensive supporting and regulating services, very high EIS, located within a freshwater ecosystem priority area, within a Critical Biodiversity Area/irreplaceable resource unit, threat to ecological components is high. Resource unit is downstream of Lake Fundudzi and upstream of the settlements. Important for monitoring the proposed development of Rambuda Dam.
II	RRU-Ri33	Ri33	A92B-00051	Middle Mutale	Resource unit on mainstem river and at outlet of catchment. Providing very important or numerous cultural services, plays an impotant role in supporting vulnerable comunities, supplies extensive supporting and regulating services, very high EIS, located within freshwater ecosystem priority area, within a Critical Biodiversity Area/irreplaceable resource unit, threat to ecological components is high. Contribution to Ramsar site. Good availability of resource quality information. Downstream of dryland and irrigated agriculture.
II	RRU-Ri34	Ri34	A92D-00030	Lower Mutale	Resource unit at lowest point of Mutale River before the confluence with the Luvuvhu. Strategic - management of international obligations, contribution to Ramsar site. Provides some cultural services and some support for vulnerable communities, extremely important for strategic purposes/idealy suited for verifying compliance with international obligations, supplies an extensive supporting an regulating service, supports activities which provide a moderate contribution to the economy, high EIS category, located within a conservation area and freshwater ecosystem priority area, moderate irreplaceability/within Critical Biodiversity Area, potential threat to ecological components is moderate.
II	RRU-Ri36	Ri36	A91K-00035	Luvuvhu	Resource unit on mainstem river and at base of IUA, Strategic - management of international obligations, contribution to Ramsar site. Provides very important or numerous cultural services, extremely important for strategic purposes/ideally suited for verifying compliance with international obligations, supplies extensive supporting and regulating services, potential threat to users is moderate, very high EIS, PES in a B Category, located within

Water Resource Class	River Resource Unit	Node	Sub-quaternary reach	River	Reason for high priority rating of resource unit
					freshwater ecosystem priority area, resource unit is irreplaceable/located within a Critical Biodiversity Area,
			Shing	gwedzi River IUA	
II	RRU-Riv28	Riv28	B90H-00113	Mphongolo	On the downstream end of the Mphongolo before the confluence with the Shingwedzi. Record contribution of flow and quality to the Shingwedzi before outlet of IUA. The reach is a Freshwater Ecosystem Priority Area. Provides important cultural services, extremely important for strategic purposes/verifying compliance with international obligations, supplies moderate supporting and regulatory services, potential threat to users is moderate
II	RRU-Ri37	Ri37	B90H-00145	Shingwedzi	Resource unit on mainstem river and at base of IUA, provides very important/numerous cultural services, extremely important for strategic purposes/for verifying compliance with international obligations, moderate supporting and regulatory services, potential threat to users is moderate, high EIS category, PES in a B category, within a freshwater ecosystem priority area

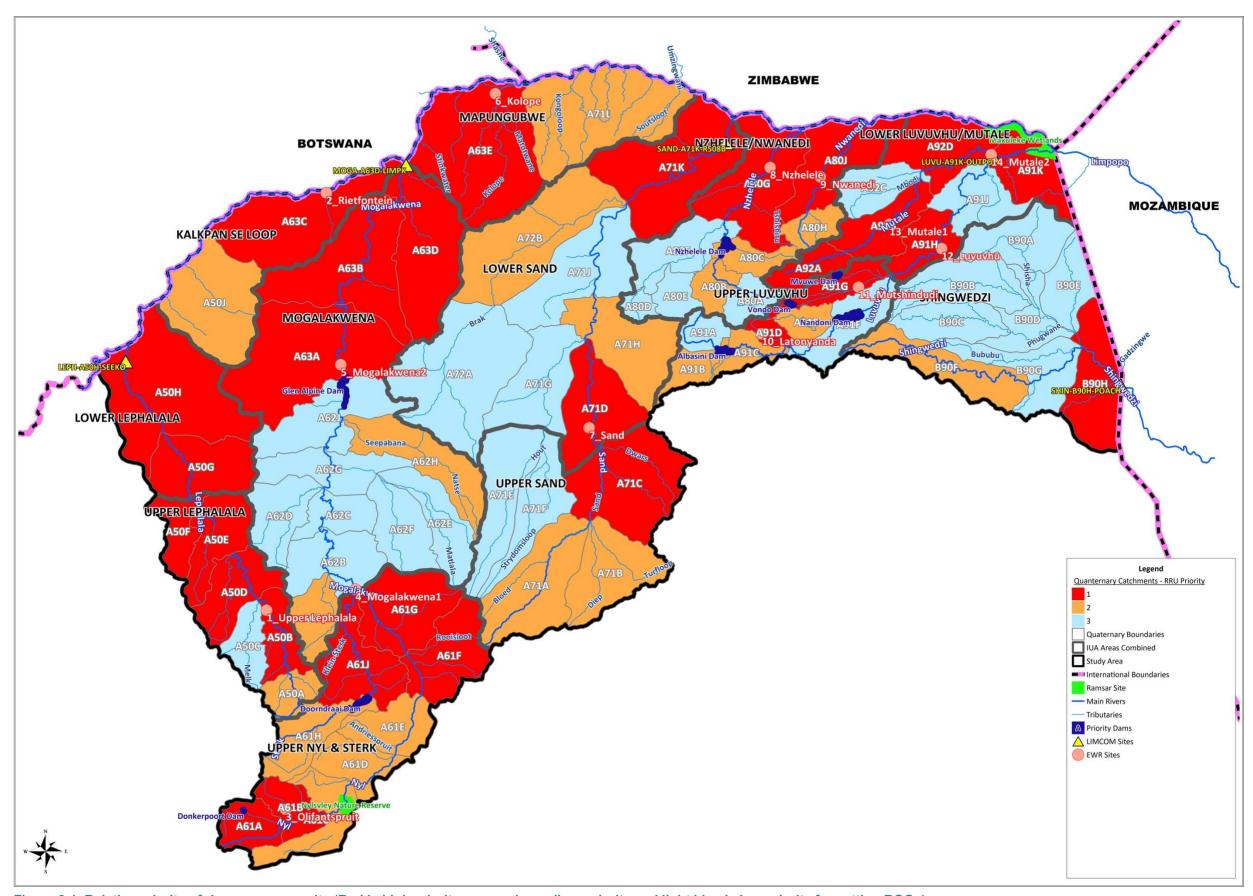


Figure 3-1. Relative priority of river resource units (Red is high priority, orange is medium priority and light blue is low priority for setting RQOs)

August 2025

Table 3-5. Summary of ecological condition for the River Resource Units (rows in bold=field verification of ecological condition)

Water Resource Class	River Resource Unit	Biophysical Node Name	Sub- quaternary reach	ver Resource U River Name	Priority	PES	El	ES	REC	TEC
				Uppe	er Lephalala IU	A				
II	RRU-Riv8	Riv8	A50A-00354	Lephalala	2	В	High	High	A/B	B/C
II	RRU-Riv11	Riv11	A50B-00262	Lephalala	1	С	High	Very High	B/C	С
II	RRU-Riv10	Riv10	A50C-00273	Melk	3	С	High	Very High	B/C	С
11	RRU-Riv13	Riv13	A50D-00237	Boklandspruit	2	В	High	Very High	A/B	В
II	RRU-Riii3	Riii3	A50H-00110	Lephalala	1	D	High	High	C/D	D
				Lowe	er Lephalala IU	A				
II	RRU-Ri8	Ri8	A50H-00110	Lephalala	1	С	High	High	С	С
				Kalk	pan se Loop IU	A				
I	RRU-Ri38	Ri38	A50J-00073	Kalkpan Se Loop	2	В	Moderate	Very Low	В	В
I	RRU-Rvi15	Rvi15	A50J-00061	No Name	2	В	Moderate	Very Low	В	В
I	RRU-Rvi1	Rvi1	A63C-00033	Rietfontein	1	B/C	Moderate	Very Low	B/C	B/C
				Upp	er Nyl/Sterk IU	A				
II	RRU-Rvii4	Rvii4	A61H-00395	Sterk	2	Е	Moderate	High	D/E	D
II	RRU-Rv1	Rv1	A61H-00395	Sterk	2	E	Moderate	High	D/E	D/E
II	RRU-Ri4	Ri4	A61J-00267	Sterk	1	С	Moderate	High	B/C	С
II	RRU-Ri1	Ri1	A61B-00489	Olifantspruit	1	С	High	Very High	С	С
II	RRU-Ri1-1	Ri1-1	A61B-00552	Nyl	1	С	Moderate	High	B/C	С
II	RRU-Riv3	Riv3	A61C-00501	Nyl	2	С	High	High	B/C	С
11	RRU-Riii1	Riii1	A61E-00386	Nyl	2	D	Moderate	Moderate	D	C/D
II	RRU-Ri3	Ri3	A61G-00297	Mogalakwena	1	D	Moderate	Moderate	D	C/D
II	RRU-Ri5	Ri5	A61G-00248	Upper Mogalakwena	1	С	Moderate	Moderate	С	С

Water Resource Class	River Resource Unit	Biophysical Node Name	Sub- quaternary reach	River Name	Priority	PES	El	ES	REC	TEC
				Мо	galakwena IUA					
II	RRU-Riv12	Riv12	A62B-00223	Mogalakwena	3	С	Moderate	Moderate	С	С
II	RRU-Ri6	Ri6	A62A-00253	Mokamole	2	D	High	High	C/D	D
II	RRU-Rv2	Rv2	A62B-00188	Mogalakwena	3	С	High	High	B/C	B/C
II	RRU-Rvii12	Rvii12	A62D-00179	Klein Mogalakwena	3	С	Moderate	High	B/C	С
II	RRU-Ri10	Ri10	A62C-00188	Mogalakwena	3	С	High	High	B/C	B/C
II	RRU-Ri12	Ri12	A62G-00167	Matlalane	3	С	Moderate	Very Low	С	С
II	RRU-Ri13	Ri13	A62H-00148	Seepabana	2	D	Moderate	Very Low	D	D
II	RRU-Rvii13	Rvii13	A62J-00143	Mogalakwena	3	С	Moderate	Moderate	С	С
II	RRU-Ri14	Ri14	A63A-00071	Middle Mogalakwena	1	С	High	Moderate	С	С
II	RRU-Rii3	Rii3	A63D-00034	Mogalakwena	1	С	Moderate	Moderate	С	С
				Ma _l	pungubwe IUA					
II	RRU-Rvi2	Rvi2	A63E-00011	Stinkwater	1	С	High	High	B/C	В
II	RRU-Riv32	Riv32	A63E-00008	Kolope	1	С	Moderate	Low	B/C	С
II	RRU-Rvi4	Rvi4	A71L-00005	Kongoloop	2	С	Moderate	Very Low	С	С
II	RRU-Rvi7	Rvi7	A71L-00003	No Name	2	С	High	Very Low	B/C	В
II	RRU-Rvi9	Rvi9	A71L-00015	Soutsloot	2	Α	Moderate	Very Low	Α	А
				Up	per Sand IUA					
II	RRU-Rvi3	Rvi3	A71G-00131	Hout	3	С	Moderate	Low	С	С
II	RRU-Ri21	Ri21	A71G-00107	Hout	3	С	Moderate	Moderate	С	C/D
III	RRU-Ri16	Ri16	A71A-00211	Sand	2	D	Moderate	Moderate	D	D/E
III	RRU-Ri17	Ri17	A71B-00214	Diep	2	D	Moderate	Low	D	D
III		Riv16	A71C-00156	Dwars	1	С	Moderate	Moderate	С	С

Water Resource Class	River Resource Unit	Biophysical Node Name	Sub- quaternary reach	River Name	Priority	PES	El	ES	REC	TEC
				Lo	wer Sand IUA					
III	RRU-Ri20	Ri20	A71D-00118	Sand	1	С	Moderate	Moderate	С	С
III	RRU-Ri22	Ri22	A71D-00118	Sand	1	С	Moderate	Moderate	С	B/C
II	RRU-Ri23	Ri23	A71H-00088	Sand	2	С	High	High	B/C	С
II	RRU-Ri24	Ri24	A71J-00055	Sand	3	С	Moderate	Moderate	С	С
II	RRU-Riv17	Riv17	A72B-00038	Brak	3	С	Moderate	Moderate	С	С
II	RRU-Ri25	Ri25	A71K-00019	Sand	1	С	High	Moderate	С	С
				Nzhelel	e and Nwaned	IUA				
II	RRU-Riii4	Riii4	A80D-00075	Mutamba	3	С	High	Very High	B/C	С
II	RRU-Riv23	Riv23	A80F-00063	Mutamba	3	С	Moderate	Moderate	С	С
II	RRU-Riii7	Riii7	A80B-00069	Nzhelele	2	D	Moderate	High	C/D	D
II	RRU-Rvii34	Rvii34	A80C-00068	Mafungudi	2	D	High	High	C/D	D
II	RRU-Riii8	Riii8	A80F-00068	Nzhelele	3	D	High	High	C/D	D
II	RRU-Ri26	Ri26	A80G-00053	Nzhelele	1	С	High	Moderate	B/C	С
II	RRU-Riv33	Riv33	A80G-00054	Tshishiru	1	C/D	Moderate	Low	C/D	С
II	RRU-Ri27	Ri27	A80G-00026	Nzhelele	1	С	High	High	С	С
II	RRU-Riii9	Riii9	A80H-00064	Йwanedі	2	В	High	Very High	A/B	B/C
II	RRU-Riii10	Riii10	A80H-00060	Luphephe	2	С	High	High	B/C	В
II	RRU-Ri28	Ri28	A80J-00028	Nwanedi	1	С	High	High	С	С
				Upp	er Luvuvhu IU	Α				
II	RRU-Rvi14	Rvi14	A91A-00105	Luvuvhu	3	С	Moderate	High	B/C	С
II	RRU-Rvii19	Rvii19	A91B-00120	Doringspruit	2	С	Moderate	High	B/C	С
II	RRU-Riii5	Riii5	A91C-00115	Luvuvhu	2	С	Moderate	High	B/C	В
II	RRU-Riii6	Riii6	A91D-00108	Latonyanda	1	С	Moderate	Very High	С	С

Water Resource Class	River Resource Unit	Biophysical Node Name	Sub- quaternary reach	River Name	Priority	PES	El	ES	REC	TEC
II	RRU-Riv18	Riv18	A91E-00103	Dzindi	2	D	High	Very High	C/D	D
II	RRU-Riv19	Riv19	A91F-00111	Luvuvhu	3	С	Moderate	High	B/C	С
II	RRU-Rvii24	Rvii24	A91F-00093	Luvuvhu	3	D	Moderate	High	C/D	D
II	RRU-Ri30	Ri30	A91G-00091	Mutshindudi	1	С	Moderate	High	С	С
				Lower L	uvuvhu / Mutal	e IUA				
II	RRU-Ri32	Ri32	A91H-00045	Luvuvhu	1	С	High	High	С	С
II	RRU-Rvii33	Rvii33	A92B-00051	Mutale	1	С	High	High	С	С
II	RRU-Ri33	Ri33	A92B-00051	Middle Mutale	1	С	High	High	С	С
11	RRU-Riv24	Riv24	A92C-00049	Mbodi	3	D	Moderate	Very Low	D	D
11	RRU-Ri34	Ri34	A92D-00030	Lower Mutale	1	С	High	High	С	B/C
11	RRU-Ri35	Ri35	A91J-00040	Luvuvhu	3	В	High	High	A/B	В
11	RRU-Ri36	Ri36	A91K-00035	Luvuvhu	1	С	Very High	High	С	B/C
				Shing	gwedzi River IU	JA				
II	RRU-Rvi10	Rvi10	B90D-00067	Shisha	3	Α	High	Moderate	А	Α
11	RRU-Riv28	Riv28	B90H-00113	Mphongolo	1	Α	High	Very Low	А	Α
11	RRU-Rvi13	Rvi13	B90F-00114	Shingwedzi	2	С	High	Moderate	B/C	С
11	RRU-Riv27	Riv27	B90G-00124	Shingwedzi	3	Α	High	Low	А	Α
II	RRU-Ri37	Ri37	B90H-00145	Shingwedzi	1	С	High	High	B/C	С

3.2 Dam Resource Unit Prioritisation

Significant dams in the study area were identified in the Delineation and Status Quo report (DWS, 2022), based on size and importance of dams for water supply.

3.2.1 Criteria and rationale for Dam Resource Prioritisation

Further screening was conducted to identify the Dams RUs that should be prioritised. As a prioritisation tool has not been developed for dams, a list of criteria was determined based on the following:

- 1. The cumulative level of impact This is the anticipated level of impact of current and future use/ activities in the upstream catchments on the inflows to the dam. The impact rating scores can range between Very High: -1; High: -0.75; Moderate: -0.5; Low: -0.25 and None; 0. Where current and future use activities have a positive impact on the dam the ratings would be positive. This is particularly the case for dams downstream of other dams where compensation releases are made.
- 2. Protection of the Resources This is evaluated based on the importance of releases for EWRs downstream of the dam. Where the recommended ecological category is higher than current this was reflected as high. The rating ranged from Very High: 1; High:0.75; Moderate: 0.5, Low: 0.25; Not Important: 0.
- 3. Water Resource Dependent Activities This is evaluated based on importance of the dam for in-dam activities and releases of water for downstream use (irrigation, domestic, mining and industries, etc.) The rating scores given range from Very High 1; High:0.75; Moderate: 0.5, Low: 0.25; Not Important: 0. The magnitude of the releases for and the categories for downstream use was considered in the rating.
- 4. The water quality impact to dependent activities This criterion intends to determine the dams which have a negative impact on the quality of the dependent activities both in dam as well as the releases for the downstream users. The impact rating scores can range between Very High: -1; High: -0.75; Moderate: -0.5; Low: -0.25 and None; 0.

It was considered that not all the above criteria have equal weights. These were weighted differently as illustrated in Table 3-6 below.

Components with importance scores of 0.5 and higher for the 'importance for protection' or 'importance for other water use' are then selected as priority dam RUs.

Table 3-6. Criteria use to assess the prioritisation of dams

Criteria	Weight
Cumulative level if Impact of current and future use in upstream activities	0.20
Protection of the Resources - Releases for EWRs downstream of the dam	0.25
Water Resource Dependent Activities - Downstream Uses	0.25
Water Resource Dependent Activities – In dam activities	0.15
Water Quality Impact on downstream use	0.15
Total Score	1.00

3.3 Dam Resource Unit Prioritisation

3.3.1 Dam Prioritisation - Upper Nyl/Sterk and Mogalakwena Resource Units

Results of the RU prioritisation of the dams in the Upper Nyl/ Sterk and Mogalakwena IUA are presented in Table 3-7.

All three dams scored on the importance scores above the 0.5 threshold. It is important to note the following:

- The Doorndraai Dam and Glen Alpine Dams are negatively impacted by the current and future water upstream of these dams. This is because there is increasing abstraction upstream of these two dams which will impact on the run-off into the dams. This will have an impact on releases for the downstream EWRs to meet the maintenance low flows and in some cases the maintenance high flows.
- 2) The needs for protection of the resources downstream of all three dams is significant and score very high on all three dams. This is because of the need to either maintain and /or improve the ecological condition of the sites downstream of the three dams.
- 3) All three dams are highly important for water resource dependent activities with releases to meet the downstream water users dependent of the dams. It must be noted that the available yield in all three dams is fully allocated, hence the very high importance ratings.

3.3.2 Dam Prioritisation – Upper and Lower Sand Resource Units

Results of the RU prioritisation of the dams in the Upper and Lower Sand River IUA are presented in Table 3-8. The weighted scored were based on the following:

- The cumulative level of impact of the upstream water uses on the three dams of Turfloop, Houtriver and Seshego are not significant as all three dams are located upstream of the tributaries of the Sand River.
- 2) There are significant return flows into the Sand River which are much higher than the maintenance low flows required to meet the flows of the recommended ecological category of the sites in the Sand River catchments. This is attributed to the significant water transfers from the neighbouring catchments to meet the current and future requirements of the domestic, mining and industrial sectors in the catchment. To meet the flows required for the recommended ecological category, less maintenance low flows are required. Therefore, the dams are not required to release water for water resource protection. The dams scored low on this criterion.
- 3) For water dependent activities, the importance of the dams in the Sand River only supplements the water from transfers and therefore plays an insignificant role compared to the transfers into the system. The dams scored low on this criterion.

The overall weighted scores of all three dams did not achieve the threshold of 0.5 or higher. They were therefore not included in the prioritised dams for which RQOs should be developed.

Table 3-7. Resource unit priority scores for dams in the Upper Nyl/Sterk and Mogalakwena IUAs

Dams	River or	Quaternary	MAR (million	FSC (million	FSC: MAR	Purpose	Criteria	Rating	Weight	Score	Ranking
Damo	Watercourse	quaternary	m3/a)	m3/a)	Ratio	i di poco		· · · · · · · · · · · · · · · · · · ·	g.i.t	300.0	
							Cumulative level if Impact of current and future use in upstream activities	-	0.20	ı	
							Protection of the Resources	1.00	0.25	0.25	
Donkerpoort	Little Nyl	A61A	5.3	2.4	0.45	Municipal Use &	Water Resource Dependent Activities - Downstream Uses	1.00	0.25	0.25	2
						Industries	Water Resource Dependent Activities – In dam activities	0.25	0.15	0.04	
							Water Quality Impact on downstream use	0.25	0.15	0.04	
							Total Score		1.00	0.58	
							Cumulative level if Impact of current and future use in upstream activities	- 0.25	0.20	- 0.05	
						Municipal	Protection of the Resources	1.00	0.25	0.25	
Doorndraai	Sterk	A61H	38.1	46.5	1.22	Use & Industrial	Water Resource Dependent Activities - Downstream Uses	1.00	0.25	0.25	1
						Use	Water Resource Dependent Activities – In dam activities	0.50	0.15	0.08	
							Water Quality Impact on downstream use	0.50	0.15	0.08	
							Total Score		1.00	0.60	
							Cumulative level if Impact of current and future use in upstream activities	- 0.25	0.20	- 0.05	
							Protection of the Resources	1.00	0.25	0.25	
Glen Alpine	Mogalakwena	A62J	204	18.9	0.09	Irrigation	Water Resource Dependent Activities - Downstream Uses	1.00	0.25	0.25	3
							Water Resource Dependent Activities – In dam activities	0.25	0.15	0.04	
							Water Quality Impact on downstream use	0.25	0.15	0.04	
							Total Score		1.00	0.53	

Table 3-8. Resource unit priority scores for dams in the Upper and Lower Sand River IUAs

Table 3-8.	Resource	unit priority s	cores for a	ams in the C	pper and	Lower Sand Riv	veriuas				
Dams	River or Watercourse	Quaternary	MAR (million m3/a)	FSC (million m3/a)	FSC: MAR Ratio	Purpose	Criteria	Rating	Weight	Score	Ranking
							Cumulative level if Impact of current and future use in upstream activities	-	0.20	-	
							Protection of the Resources	0.25	0.25	0.06	
Turfloop	Sand	A71B	0.6	3.3	5.5	Municipal Use & Industries	Water Resource Dependent Activities - Downstream Uses	-	0.25	ı	2
							Water Resource Dependent Activities – In dam activities	-	0.15	-	
							Water Quality Impact on downstream use	0.25	0.15	0.04	
							Total Score		1.00	0.10	
							Cumulative level if Impact of current and future use in upstream activities	- 0.25	0.20	- 0.05	
							Protection of the Resources	0.25	0.25	0.06	
Houtriver	Sand	A71E	0.4	7.5	18.75	Municipal Use & Industrial Use	Water Resource Dependent Activities - Downstream Uses	-	0.25	-	3
							Water Resource Dependent Activities – In dam activities	-	0.15	i	
							Water Quality Impact on downstream use	0.50	0.15	0.08	
							Total Score		1.00	0.09	
							Cumulative level if Impact of current and future use in upstream activities	- 0.25	0.20	- 0.05	
							Protection of the Resources	-	0.25	_	
Seshego	Bloed	A71A	204	2.38	0.01	Domestic & Stock Watering	Water Resource Dependent Activities - Downstream Uses	0.25	0.25	0.06	1
							Water Resource Dependent Activities – In dam activities	-	0.15	-	
							Water Quality Impact on downstream use	0.75	0.15	0.11	
							Total Score		1.00	0.13	

3.3.3 Dam Prioritisation - Nzhelele /Nwanedi Resource Units

Results of the RU prioritisation of the dams in the Nzhelele and Nwanedi IUA are presented in Table 3-9.

There are five dams that were evaluated in the Nzhelele and Nwanedi IUA. The dam prioritisation highlighted the following:

- 1) Cumulative level of impact on current and future water use upstream of the dam:
 - a. The Nzhelele Dam is negatively impacted by the upstream domestic water use from Mutshedzi Dam which limits the runoff to the dam. In addition, there is significant commercial forestry upstream of Nzhelele Dam. This together with the increasing invasive alien plants (IAP) is impacting negatively on the runoff into the dam.
 - b. The other four dams are not significantly impacted by any cumulative impacts upstream of the dams.

2) Protection of the Resources:

- a. The recommended ecological category downstream of Nzhelele Dam requires releases of maintenance low flows from the dam to maintain and improve the ecological function of the river reach up to the confluence with the Limpopo River. Therefore, it scores very high on this criterion.
- b. All three other dams are in the Nwanedi River. All dams can contribute to the releases for the maintenance low flows required for the downstream EWRs. They scored high.
- 3) Water Resources Dependent Activities Downstream Uses:
 - a. There are significant downstream water users dependent on Nzhelele Dam with water diverted into canal to meet the needs of irrigation agriculture. There is also potential for the current mining activities to obtain a licence from Nzhelele Dam if they refurbish the leaking irrigation canal system. Nzhelele Dam scores very high on water resources dependent activities as it is the only resource for the downstream water use.
 - b. The irrigation agriculture downstream of Cross Dam has not been taking up its allocation. Furthermore, the other two dams can also provide additional water for the downstream water uses in the Nwanedi River providing flexibility of supplying the users. They scored high on this criterion.
- 4) Water Quality impact on downstream users:
 - a. The water quality of the water resources from the dam releases didn't impact negatively on the downstream water users. The impact rating was determined to be none on all five dams in the Nzhelele / Nwanedi IUA.

The overall weighted score for Nzhelele Dam achieved the threshold higher than 0.5. However, the overall weighted scores for the other four dams did not achieve the threshold of 0.5 or higher. Therefore, only Nzhelele Dam was prioritised for the RQOs of the dam resources.

Table 3-9. Resource unit priority scores for dams in the Nzhelele / Nwanedi River IUAs

Table 3-9.	able 3-9. Resource unit priority scores for dams in the Nzhelele / Nwanedi River IUAs												
Dams	River or Watercourse	Quaternary	MAR (million m3/a)	FSC (million m3/a)	FSC: MAR Ratio	Purpose	Criteria	Rating	Weight	Score	Ranking		
							Cumulative level if Impact of current and future use in upstream activities	-	0.20	-			
						Irrigation,	Protection of the Resources	0.75	0.25	0.19			
Mutshedzi	Mutshedzi	A80A	15.5	2.2	0.14	Domestic &	Water Resource Dependent Activities - Downstream Uses	0.50	0.25	0.13	3		
						Industrial Use	Water Resource Dependent Activities – In dam activities	-	0.15	-			
							Water Quality Impact on downstream use	-	0.15	1			
							Total Score		1.00	0.31			
							Cumulative level if Impact of current and future use in upstream activities	- 0.25	0.20	- 0.05			
							Protection of the Resources	1.00	0.25	0.25			
Nzhelele	Nzhelele	A80C	73.4	51.2	0.70	Irrigation	Water Resource Dependent Activities - Downstream Uses	1.00	0.25	0.25	1		
							Water Resource Dependent Activities – In dam activities	0.50	0.15	0.08			
							Water Quality Impact on downstream use	-	0.15	-			
							Total Score		1.00	0.53			
							Cumulative level if Impact of current and future use in upstream activities	-	0.20	-			
							Protection of the Resources	1.00	0.25	0.25			
Luphephe	Luphephe	A80H	21.4	14.8	0.69	Irrigation	Water Resource Dependent Activities - Downstream Uses	0.75	0.25	0.19	2		
							Water Resource Dependent Activities – In dam activities	-	0.15	-			
							Water Quality Impact on downstream use	-	0.15	-			
							Total Score		1.00	0.44			
Nwanedi	Nwanedi	A80H	9.5	5.3	0.56	Irrigation	Cumulative level if Impact of current and future use in upstream activities	-	0.20	-	4		

Dams	River or Watercourse	Quaternary	MAR (million m3/a)	FSC (million m3/a)	FSC: MAR Ratio	Purpose	Criteria	Rating	Weight	Score	Ranking
							Protection of the Resources	0.75	0.25	0.19	
							Water Resource Dependent Activities - Downstream Uses	0.25	0.25	0.06	
							Water Resource Dependent Activities – In dam activities	0.25	0.15	0.04	
							Water Quality Impact on downstream use	-	0.15	-	
							Total Score		1.00	0.29	
							Cumulative level if Impact of current and future use in upstream activities	-	0.20	-	
							Protection of the Resources	0.50	0.25	0.13	
Cross Dam	Nwanedi	A80H	204	2.6	0.01	Irrigation	Water Resource Dependent Activities - Downstream Uses	0.25	0.25	0.06	5
							Water Resource Dependent Activities – In dam activities	-	0.15	-	
							Water Quality Impact on downstream use	-	0.15	-	
							Total Score		1.00	0.19	

3.3.4 Dam Prioritisation – Luvuvhu / Mutale Resource Units

Results of the RU prioritisation of the dams in the Upper Luvhuvhu and Luvuvhu/Mutale IUAs are presented in Table 3-10.

There are nine dams that were evaluated in the Upper Luvhuvhu and Luvuvhu/Mutale IUAs. The dam prioritisation highlighted the following:

- 1) Cumulative level of impact on current and future water uses in upstream of the dam:
 - a. The upstream activities of the Albasini and Vondo Dams negatively impact on the inflows into these two dams significantly. In addition, Vondo Dam transfers water to the Mutshedzi dam. This will have a negative impact on the releases for the maintenance low flows from Vondo Dam. The impact rating for the two dams was low.
 - b. The other eight dams are not significantly impacted by any cumulative impacts upstream of the dams. The impact rating for the eight dams was none.

2) Protection of the Resources:

- a. The recommended ECs downstream of Albasini, Vondo and Nandoni Dams require releases of maintenance low flows from the dams to maintain and improve the ecological function of the river reach into the Kruger National Park. In addition, the contribution of tributary inflow from Mbwedi River where Damani Dam is located is important to the downstream releases. Therefore, the impact rating scores were very high on this criterion.
- b. The impact rating for the other dams was also determined to be high as the releases from these dams would contribute to meeting the maintenance low flows for the downstream river reaches.
- 3) Water Resources Dependent Activities Downstream Uses:
 - a. There are significant downstream water users dependent on the dams in the Luvuvhu river systems with water diverted into canals to meet the needs of both domestic and irrigation agriculture. The impact rating scores for the dams in the Luvuvhu River system was very high to high.
 - b. The dam in the Mutale River is important for cultural and in-dam activities. Its impact rating score for this criterion was medium.
- 4) Water Quality impact on downstream users:
 - a. The water quality of the water resources from the dam releases has some negative impact on the downstream water users. The impact rating was determined to be low on all the dams in the Upper Luvuvhu and Luvuvhu/Mutale IUAs.

The overall weighted score for Nandoni, Vondo, Albasini and Damani Dams achieved the threshold of 5.0 or higher. However, the overall weighted scores for all the other dams did not achieve the threshold of 0.5 or higher. Therefore, only four dams in the Luvuvhu system were prioritised for developing RQOs.

Eight dams in total were prioritised in the study area for developing RQOs of the dam resources. The details of these dams are provided in Table 3-11 and Figure 3-2.

Table 3-10. Resource unit priority scores for dams in the Luvhuvhu / Mutale River IUAs

Table 3-10.	Resource t	init priority s	cores for	dams in t	ne Luvr	uvhu / Mutal	e River IUAS				
Dams	River or Watercourse	Quaternary	MAR (million m3/a)	FSC (million m3/a)	FSC: MAR Ratio	Purpose	Criteria	Rating	Weight	Score	Ranking
							Cumulative level if Impact of current and future use in upstream activities	- 0.25	0.20	- 0.05	
						Irrigation,	Protection of the Resources	1.00	0.25	0.25	
Albasini	Luvhuvhu	A91B	14.56	25.2	1.73	Domestic & Industrial	Water Resource Dependent Activities - Downstream Uses	1.00	0.25	0.25	2
						Use	Water Resource Dependent Activities – In dam activities	0.75	0.15	0.11	
							Water Quality Impact on downstream use	- 0.25	0.15	- 0.04	
							Total Score		1.00	0.53	
							Cumulative level if Impact of current and future use in upstream activities	-	0.20	1	
							Protection of the Resources	0.75	0.25	0.19	
Mambedi Lower Dam	Mambedi Spruit	A91C	57.72	7.2	0.12	Irrigation	Water Resource Dependent Activities - Downstream Uses	1.00	0.25	0.25	6
							Water Resource Dependent Activities – In dam activities	0.50	0.15	0.08	
							Water Quality Impact on downstream use	- 0.25	0.15	- 0.04	
							Total Score		1.00	0.48	
							Cumulative level if Impact of current and future use in upstream activities	-	0.20	1	
							Protection of the Resources	1.00	0.25	0.25	
Vondo	Mutshindundi	A91G	132.75	30.45	0.23	Irrigation	Water Resource Dependent Activities - Downstream Uses	1.00	0.25	0.25	4
							Water Resource Dependent Activities – In dam activities	0.50	0.15	0.08	
							Water Quality Impact on downstream use	- 0.25	0.15	- 0.04	
							Total Score		1.00	0.54	

Dams	River or Watercourse	Quaternary	MAR (million m3/a)	FSC (million m3/a)	FSC: MAR Ratio	Purpose	Criteria	Rating	Weight	Score	Ranking	
	Luvhuvhu	A91F	30.8	164	5.32	Irrigation, Domestic, Industrial & Recreational Use	Cumulative level of Impact of current and future use in upstream activities	-	0.20	-		
							Protection of the Resources	1.00	0.25	0.25	1	
Nandoni							Water Resource Dependent Activities - Downstream Uses	0.75	0.25	0.19		
							Water Resource Dependent Activities – In dam activities	1.00	0.15	0.15		
							Water Quality Impact on downstream use	- 0.25	0.15	- 0.04		
							Total Score		1.00	0.55		
	Mbwedi	A91G	132.75	11	0.08	Irrigation, Domestic & Industrial Use	Cumulative level if Impact of current and future use in upstream activities	-	0.20	-	3	
							Protection of the Resources	1.00	0.25	0.25		
Damani							Water Resource Dependent Activities - Downstream Uses	1.00	0.25	0.25		
							Water Resource Dependent Activities – In dam activities	0.25	0.15	0.04		
							Water Quality Impact on downstream use	- 0.25	0.15	- 0.04		
							Total Score		1.00	0.50		
	Latonyanda	A91D 4	48.12	3.85	0.08	Domestic & Industrial Use	Cumulative level if Impact of current and future use in upstream activities	-	0.20	-	- - 5	
							Protection of the Resources	0.75	0.25	0.19		
Tshakhuma							Water Resource Dependent Activities - Downstream Uses	0.50	0.25	0.13		
							Water Resource Dependent Activities – In dam activities	0.50	0.15	0.08		
							Water Quality Impact on downstream use	- 0.25	0.15			
							Total Score		1.00	0.35		

Dams	River or Watercourse	Quaternary	MAR (million m3/a)	FSC (million m3/a)	FSC: MAR Ratio	Purpose	Criteria	Rating	Weight	Score	Ranking	
Phiphindi	Mutshindundi	A91G	132.75	0.19	0.00	Domestic & Industrial Use	Cumulative level if Impact of current and future use in upstream activities	-	0.20	-		
							Protection of the Resources	0.50	0.25	0.13	7	
							Water Resource Dependent Activities - Downstream Uses	0.50	0.25	0.13		
							Water Resource Dependent Activities – In dam activities	-	0.15	-		
							Water Quality Impact on downstream use	0.25	0.15	0.04		
							Total Score		1.00	0.29		
	Mutale	A92A	114.19	21.5	0.19	Cultural Use	Cumulative level if Impact of current and future use in upstream activities	-	0.20	-	1	
Mukumbani (Lake Fundudzi)							Protection of the Resources	0.75	0.25	0.19		
							Water Resource Dependent Activities - Downstream Uses	0.50	0.25	0.13		
							Water Resource Dependent Activities – In dam activities	1.00	0.15	0.15	-	
							Water Quality Impact on downstream use	- 0.25	0.15	- 0.04		
							Total Score		1.00	0.43		
Thate Vondo Dam	Tshirovho	A92A	114.19	3.9	0.03	Domestic & Industrial Use	Cumulative level if Impact of current and future use in upstream activities	- 0.25	0.20	- 0.05		
							Protection of the Resources	0.75	0.25	0.19	2	
							Water Resource Dependent Activities - Downstream Uses	1.00	0.25	0.25		
							Water Resource Dependent Activities – In dam activities	0.25	0.15	0.04		
							Water Quality Impact on downstream use	- 0.25	0.15	- 0.04		
							Total Score		1.00	0.39		

Table 3-11. Priority dams in the study area

IUA	Dam Name	River / Watercourse	Quaternary Catchment	MAR at Dam site	Capacity (million m3)	Completion Date	Completion Date Raised	Owner	Purpose / Use
Nyl/Sterk	Donkerpoort	Little Nyl	A61A	5.3	2.4	1945	1970	Modimolle	Municipal Use & Industries
Nyl/Sterk	Doorndraai	Sterk	A61H	38.1	46.5	1952	1974	DWS	Municipal Use & Industrial Use
Mogalakwena	Glen Alpine	Mogalakwena	A62J	204	18.9	1968		DWS	Irrigation
Nzhelele- Nwanedi	Nzhelele	Nzhelele	A80C	73.4	51.2	1948		DWS	Irrigation
Upper Luvuvhu	Albasini	Luvuvhu	A91B	14.56	25.2	1952		DWS	Irrigation, Domestic & Industrial Use
Upper Luvuvhu	Vondo	Mutshindudi	A91G	132.75	30.45	1985	1994	DWS	Irrigation
Upper Luvuvhu	Nandoni	Luvuvhu	A91F	30.8	164	2005		DWS	Irrigation, Domestic, Industrial & Recreational Use
Upper Luvuvhu	Mvuwe	Mbwedi	A91G	132.75	11	1991		DWS	Irrigation, Domestic & Industrial Use

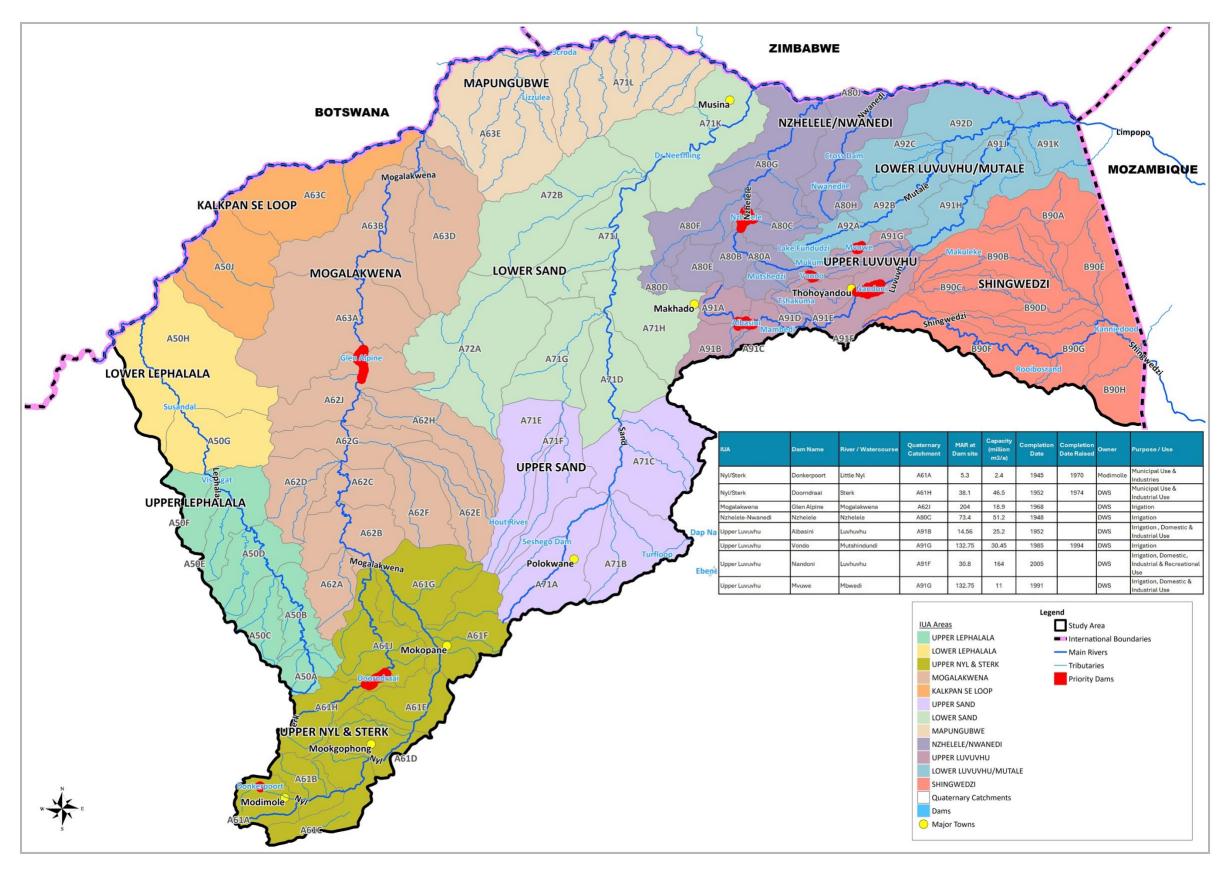


Figure 3-2. Prioritised dams in the study area

August 2025

3.4 Wetland Resource Unit Prioritisation

The focus of the wetland component for this report is to outline RU prioritisation and the determination of wetland components, sub-components and indicators that will go forward to the development of RQOs for wetlands. To do so however, it is necessary to outline the approach to setting wetland RQOs as well as the prioritisation of wetlands, which was done as a detailed task of this project and is reported on in detail in volume 1 of the wetland report (DWS, 2024; this project).

3.4.1 Wetland RQO Process

Due to the high number of wetlands within the study area (Figure 3-4), it is unrealistic to implement and monitor RQOs for each individual wetland. Following the recommendations and method guidelines by DWS (2016) and more recently by Bredin *et al* (2019), specific RQOs will be set for the highest priority wetlands. The overall, integrated process of determining RQOs for wetlands is shown in Figure 3-3. Similarly, Bredin *et al*. (2019) outline a 5-step process to determine wetland RQOs:

- Identify potentially significant wetland resources. This was done as part of the inception report
 of this project.
- Identify, verify, and prioritize wetland resources to inform the delineation of Resource Units. This was completed as part of volume 1 of the wetland report (wetland ecostatus and priority).
- Desktop delineation, Present Ecological State and Importance and Sensitivity of Priority
 Wetland Resources to determine the Recommended Ecological Category and to inform the
 delineation of Resource Units. This was also completed as part of volume 1 of the wetland report
 (wetland ecostatus and priority) and incorporated infield verification of wetland delineation,
 ecostatus and impacts.
- Determine sub-components and indicators; and
- Set Resource Quality Objectives, and numerical criteria, and provide implementation information.

The objective of the wetland component is to specify RQOs for wetlands at both a catchment level as well as prioritised individual wetland RUs (prioritisation was conducted as part of the RU and IUA prioritisation, delineation and wetland status quo reporting task. Catchment-level RQOs provide broad level objectives for wetland management within the WMA. RQOs for priority individual wetland or wetland complexes are dependent on available baseline data, and where such data are available, this enables the specification of numeric as well as narrative RQOs to manage these systems according to the desired ecological condition.

The following summarises the process for RQO determination (DWS, 2016 and Bredin et al., 2019):

1. Collate information on flow and non-flow related impacts

This requires collation of information on flow and non-flow related impacts identified in previous tasks.

2. Select sub-components and indicators for RQO determination and monitoring

The main components of relevance to wetlands includes water quantity, water quality, wetland habitats and biota. Sub-components and indicators should reflect those that are sensitive to actual or potential impacts and can be measured and monitored.

3. Provide narrative RQOs for indicators of High Priority wetlands

This involves the preparation of narrative RQOs for sub-components and indicators identified as relevant in the previous action.

4. Provide numeric RQOs for indicators of high Priority wetlands

This involves the preparation of numerical RQOs to complement the narrative RQOs but will be limited by existing baseline data or dependent on infield verification.

5. Provide broad level narrative RQOs for wetlands across the WMA

Generic management guidelines specific to the wetland RUs should provide management and monitoring approaches for specific sub-components (relevant to the wetland types and risks of the relevant wetland region).

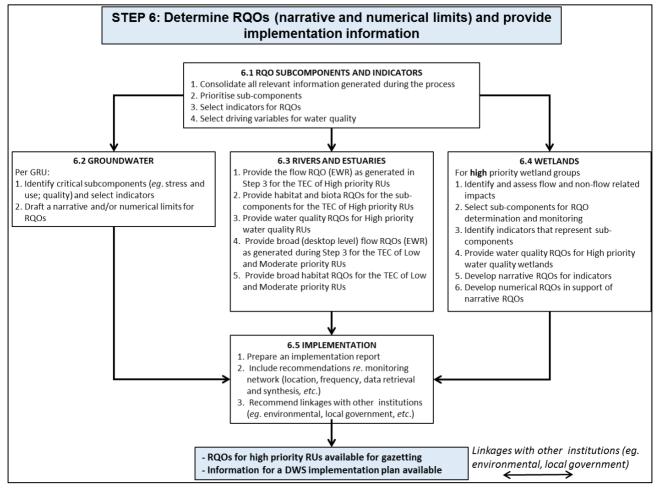


Figure 3-3. Illustration of the sub-steps for the process of RQO determination (narrative and numerical; after DWS, 2016).

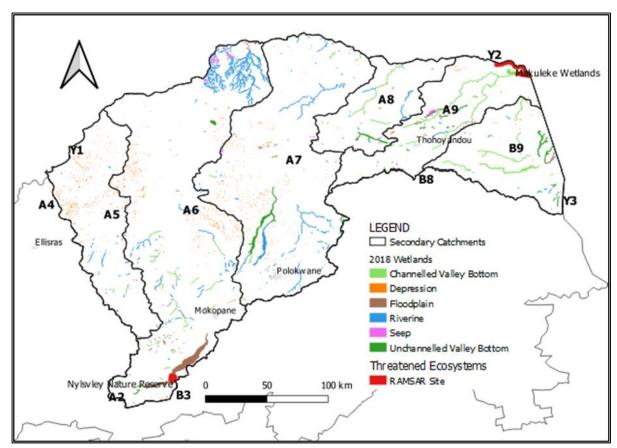


Figure 3-4. Wetlands within the study area showing distribution of different HGM types (2018 updated wetland map 5) and secondary catchments.

3.4.2 Wetland Prioritisation

The objective of this step was to identify high-priority wetlands or wetland groups since wetlands are numerous and scattered throughout the study area, and limited resources prevent detailed assessment of all of them. Only the highest priority wetlands are therefore earmarked for further analysis in the process. These high-priority areas were selected based on ecological, socio-cultural and water resource use importance and are often areas of high ecological importance where water resources are stressed or may be stressed in future. A simple 7-step process was followed using the best available data (Figure 3-5):

- Step 1: Determine wetland present ecological state (PES) at sub quaternary catchment scale.
- Step 2: Determine wetland ecological importance (EI) at the same scale as above.
- Step 3: Determine wetland sensitivity (ES) at the same scale as above.
- Step 4: Determine the wetland importance score (IS) by integrating EI, ES and socio-cultural importance (SCI).
- Step 5: Determine the integrated environmental importance of wetland/s (IEI) by integrating IS and PES.
- Step 6: Determine wetland priority by integration of IEI and water resource use importance (WRUI).
- Step 7: Contribute to determining High Priority Areas by integrating with other components.

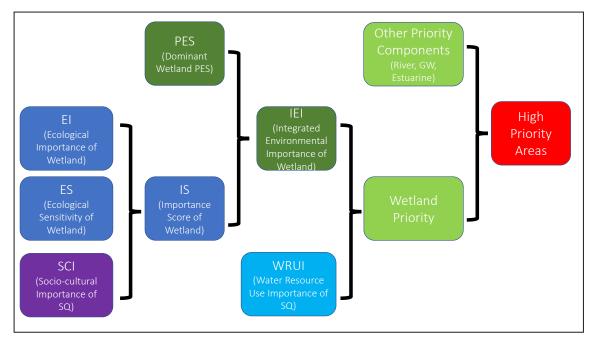


Figure 3-5. Summary of the process to identify high-priority wetlands.

The results of wetland prioritisation are geographically shown in Figure 3-6 at the sub-quaternary (SQ). scale and are also tabulated in Table 3-12. SQs with Very High priority comprised 9.7% of SQs and 37.7% of SQs had a High priority leaving just over 52% of SQs with a Moderate or Low priority.

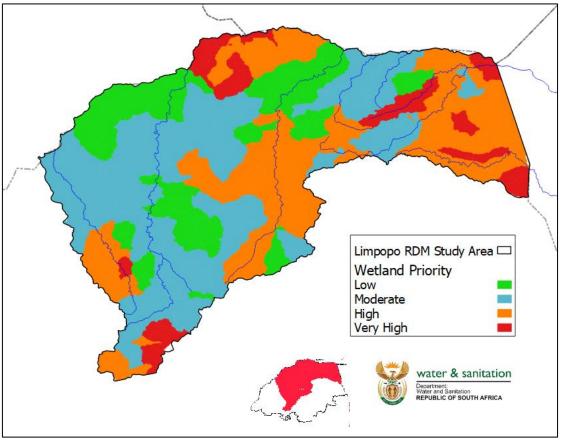


Figure 3-6. Wetland priority per SQ.

Table 3-12. Summary of wetland properties and priority at the SQ scale. PES, EI and ES categories represent the dominant state of all wetlands within each SQ. (Priority is from Very

Low - 1 - to Very High - 4).

Low – 1 – to Very High – 4). SQ	River Named in SQ	Wetland PES	Wetland El	Wetland ES	SQ Priority based on internal Wetlands
A50A-00354	Lephalala	В	HIGH	MODERATE	3
A50A-00357	Snyspruit	D	VERY HIGH	VERY HIGH	2
A50A-00370	Rietbokvleispruit	C/D	HIGH	MODERATE	2
A50A-00374	Lephalala	D	HIGH	VERY HIGH	2
A50B-00262	Lephalala	В	VERY HIGH	VERY HIGH	4
A50B-00298	Lephalala	D	HIGH	VERY HIGH	3
A50B-00303		D/E	HIGH	MODERATE	3
A50B-00344	Lephalala	В	HIGH	MODERATE	3
A50B-00345		С	HIGH	MODERATE	3
A50C-00273	Melk	C/D	HIGH	VERY HIGH	3
A50C-00302		D/E	HIGH	VERY HIGH	3
A50C-00310	Melk	D	HIGH	VERY HIGH	3
A50D-00229	Lephalala	D	HIGH	LOW	3
A50D-00237	Bloklandspruit	D	HIGH	VERY HIGH	3
A50D-00278	Goud	С	HIGH	HIGH VERY HIGH	
A50D-00281	Bloklandspruit	D/E	HIGH	VERY HIGH	3
A50E-00196	Lephalala	С	HIGH	MODERATE	3
A50E-00210	Goud	D	VERY HIGH	MODERATE	3
A50H-00110/Lephalala	Lephalala	B/C	VERY HIGH	MODERATE	2
A50H-00110/Limpopo	Limpopo	С	LOW	LOW	1
A50H-00090	Limpopo	B/C	VERY HIGH	MODERATE	2
A50J-00061		B/C	HIGH	MODERATE	1
A50H-00110/Limpopo	Limpopo	С	LOW	LOW	2
A50J-00073/Kalkpan se Loop	Kalkpan se Loop	B/C	HIGH	HIGH	1
A50H-00110/Limpopo	Limpopo	С	LOW	LOW	1
A61A-00520	Little Nyl	C/D	VERY HIGH	VERY HIGH	3
A61A-00561	Great Nyl	C/D	VERY HIGH	VERY HIGH	3
A61B-00489	Olifantspruit	С	VERY HIGH	VERY HIGH	2
A61B-00503	Middelfonteinspruit	С	VERY HIGH	VERY HIGH	2
A61B-00541	Nyl	С	VERY HIGH	VERY HIGH	2
A61B-00552	Nyl	С	VERY HIGH	VERY HIGH	2
A61C-00484	Badseloop	C/D	VERY HIGH	VERY HIGH	3
A61C-00501	Nyl	С	VERY HIGH	VERY HIGH	4
A61C-00574		C/D	MODERATE	VERY HIGH	3
A61D-00442	Tobiasspruit	С	VERY HIGH	VERY HIGH	4
A61D-00464	Nyl	С	VERY HIGH	VERY HIGH	4
A61E-00386	Nyl	C/D	VERY HIGH	VERY HIGH	2
A61E-00427	Andriesspruit	С	VERY HIGH	VERY HIGH	2

SQ	River Named in SQ	Wetland PES	Wetland El	Wetland ES	SQ Priority based on internal Wetlands
A61E-00465	Nyl	С	VERY HIGH	VERY HIGH	2
A61F-00276	Rooisloot	D/E	VERY HIGH	VERY HIGH	2
A61F-00319	Dorps	D	HIGH	VERY HIGH	2
A61F-00333	Mogalakwena	D	HIGH	VERY HIGH	2
A61F-00353	Mogalakwena	D	MODERATE	VERY HIGH	1
A61F-00371		D/E	HIGH	MODERATE	1
A61G-00248	Mogalakwena	D/E	VERY HIGH	VERY HIGH	2
A61G-00266	Groot-Sandsloot	Е	VERY HIGH	VERY HIGH	2
A61G-00274	Mogalakwena	E	HIGH	LOW	2
A61G-00294		D	HIGH	LOW	2
A61G-00297	Mogalakwena	C/D	HIGH	VERY HIGH	2
A61H-00395	Sterk	Е	VERY HIGH	VERY HIGH	2
A61H-00418	Sterk	C/D	VERY HIGH	VERY HIGH	2
A61H-00441		C/D	HIGH	VERY HIGH	2
A61J-00267	Sterk	D/E	VERY HIGH	VERY HIGH	2
A61J-00299	Sterk	C/D	VERY HIGH	VERY HIGH	2
A61J-00306	Klein-Sterk	С	VERY HIGH	VERY HIGH	2
A61J-00349		B/C	HIGH	LOW	2
A61J-00359	Mmadikiri	С	VERY HIGH	VERY HIGH	2
A61J-00369	Sterk	С	HIGH	LOW	2
A61J-00375		С	VERY HIGH	VERY HIGH	2
A61J-00376	Sterk	C/D	VERY HIGH	VERY HIGH	2
A62A-00253	Mokamole	D/E	VERY HIGH	VERY HIGH	1
A62B-00188	Mogalakwena	D	VERY HIGH	VERY HIGH	2
A62B-00223	Mogalakwena	D/E	VERY HIGH	VERY HIGH	2
A62D-00179	Klein Mogalakwena	D	VERY HIGH	VERY HIGH	2
A62D-00198	Klein Mogalakwena	D	VERY HIGH	LOW	1
A62D-00202	Mothlakole	D	VERY HIGH	LOW	1
A62E-00184	Matlala	D/E	VERY HIGH	LOW	1
A62E-00190	Seokeng	Е	HIGH	LOW	1
A62E-00191	Matlala	E	VERY HIGH	LOW	1
A62F-00185		E	VERY HIGH	LOW	1
A62G-00167	Matlalane	D	MODERATE	MODERATE	1
A62G-00177	Mogalakwena	D	VERY HIGH	VERY HIGH	1
A62H-00148	Seepabana	E	VERY HIGH	LOW	1
A62H-00155		B/C	MODERATE	MODERATE	1
A62H-00158	Natse	B/C	VERY HIGH	MODERATE	2
A62H-00192	Tshipu	C/D	MODERATE	MODERATE	1
A62H-00195		B/C	MODERATE	MODERATE	1
A62J-00140		D/E	MODERATE	VERY HIGH	1

SQ	River Named in SQ	Wetland PES	Wetland EI	Wetland ES	SQ Priority based on internal Wetlands
A62J-00142	Mogalakwena	С	HIGH	MODERATE	2
A62J-00143	Mogalakwena	Е	LOW	VERY HIGH	1
A63A-00071	Mogalakwena	С	VERY HIGH	MODERATE	2
A63B-00046	Mogalakwena	D	HIGH	LOW	1
A63B-00077	Leokeng	D	HIGH	VERY HIGH	2
A63C-00033		B/C	MODERATE	MODERATE	1
A50H-00110/Limpopo	Limpopo	С	LOW	LOW	2
A63D-00034	Mogalakwena	D/E	HIGH	HIGH	1
A63D-00036	Mogalakwena	B/C	MODERATE	LOW	1
A63D-00037	Sonope	D	VERY HIGH	LOW	1
A63D-00044	Sethonoge	В	VERY HIGH	VERY HIGH	2
A63E-00010	Madibohloko	B/C	VERY HIGH	LOW	4
A50H-00110/Limpopo	Limpopo	С	LOW	LOW	2
A63E-00011/Stinkwater	Stinkwater	B/C	VERY HIGH	LOW	4
A63E-00016	Setoka	D	VERY HIGH	LOW	3
A63E-00018	Kolope	B/C	VERY HIGH	LOW	4
A63E-00020	Setonki	Е	VERY HIGH	LOW	3
A63E-00021	Kolope	D	VERY HIGH	LOW	3
A63E-00024	Matotwane	В	VERY HIGH	LOW	4
A63E-00025	Kolope	В	VERY HIGH	LOW	4
A63E-00005	Limpopo	B/C	HIGH	HIGH HIGH	
A63E-00007/Kolope	Kolope	B/C	VERY HIGH	VERY HIGH	4
A50H-00110/Limpopo	Limpopo	С	LOW	LOW	2
A63E-00007/Kolope	Kolope	B/C	VERY HIGH	VERY HIGH	4
A63E-00008	Kolope	D	VERY HIGH	HIGH	3
A63E-00009	Limpopo	В	HIGH	LOW	4
A71A-00211	Sand	D/E	HIGH	LOW	3
A71A-00239	Bloed	D	HIGH	MODERATE	3
A71A-00249	Sand	D	HIGH	MODERATE	3
A71B-00214	Diep	D	MODERATE	LOW	1
A71B-00221	Turfloop	D	HIGH	VERY HIGH	2
A71B-00222	Diep	D	VERY HIGH	MODERATE	1
A71C-00156	Dwars	D	VERY HIGH	MODERATE	3
A71C-00172	Sand	D	VERY HIGH	LOW	3
A71C-00181	Koperspruit	D	VERY HIGH	MODERATE	3
A71C-00183	Sand	D	VERY HIGH	LOW	3
A71D-00118	Sand	D	VERY HIGH	MODERATE	3
A71E-00169	Hout	Е	VERY HIGH	VERY HIGH	2
A71F-00170	Brakspruit	C/D	VERY HIGH	VERY HIGH	2
A71F-00174		С	VERY HIGH	VERY HIGH	2

SQ	River Named in SQ	Wetland PES	Wetland El	Wetland ES	SQ Priority based on internal Wetlands
A71F-00176	Strydomsloop	D/E	VERY HIGH	VERY HIGH	2
A71G-00107	Hout	C/D	HIGH	VERY HIGH	3
A71G-00129	Mogwatsane	C/D	HIGH	MODERATE	3
A71G-00131	Hout	D	VERY HIGH	VERY HIGH	3
A71H-00088	Sand	C/D	HIGH	VERY HIGH	3
A71J-00055	Sand	D/E	VERY HIGH	MODERATE	1
A71J-00074	Sand	В	HIGH	HIGH	3
A71J-00076		Е	MODERATE	MODERATE	1
A71J-00084	Moleletsane	D	VERY HIGH	MODERATE	1
A71K-00019/SAND	Sand	D	HIGH	VERY HIGH	1
A50H-00110/Limpopo	Limpopo	С	LOW	LOW	1
A71K-00029		D	MODERATE	LOW	1
A71K-00031	Sand	D	VERY HIGH	LOW	1
A71L-00012		D/E	HIGH	LOW	3
A71L-00013	Kongoloop	D	HIGH	HIGH	3
A71L-00014		D/E	VERY HIGH	LOW	3
A71L-00015	Soutsloot	В	MODERATE	HIGH	3
A71L-00017	Kongoloop	D	MODERATE	HIGH	3
A71L-00002		С	HIGH	LOW	3
A50H-00110/Limpopo	Limpopo	С	LOW	LOW	2
A71L-00022	Soutsloot	D/E	HIGH	VERY HIGH	3
A71L-00023		D/E	HIGH	VERY HIGH	3
A71L-00003		В	HIGH	LOW	3
A50H-00110/Limpopo	Limpopo	С	LOW	LOW	2
A71L-00004		С	HIGH	HIGH	3
A50H-00110/Limpopo	Limpopo	С	LOW	LOW	2
A63E-00005	Limpopo	B/C	HIGH	HIGH	3
A50H-00110/Limpopo	Limpopo	С	LOW	LOW	1
A71L-00006		Е	VERY HIGH	LOW	3
A50H-00110/Limpopo	Limpopo	С	LOW	LOW	1
A72A-00116	Boshela	E/F	HIGH	VERY HIGH	3
A72A-00123	Brak	D	HIGH	LOW	3
A72A-00133	Ga-Mamasonya	D/E	HIGH	MODERATE	3
A72A-00134	Brak	С	HIGH	LOW	3
A72B-00038	Brak	D/E	VERY HIGH	MODERATE	1
A72B-00052		D/E	VERY HIGH	LOW	1
A72B-00057	Brak	С	VERY HIGH	VERY HIGH	2
A80A-00100	Tshiluvhadi	D	HIGH	MODERATE	3
A80A-00102	Phangani	D/E	HIGH	MODERATE	3
A80A-00089	Nzhelele	D	VERY HIGH	VERY HIGH	3

SQ	River Named in SQ	Wetland PES	Wetland El	Wetland ES	SQ Priority based on internal Wetlands
A80A-00095	Mutshedzi	В	VERY HIGH	VERY HIGH	3
A80B-00069	Nzhelele	D/E	VERY HIGH	VERY HIGH	3
A80C-00068	Mufungudi	D/E	VERY HIGH	VERY HIGH	2
A80D-00075	Mutamba	D/E	HIGH	MODERATE	1
A80F-00063	Mutamba	С	VERY HIGH	VERY HIGH	2
A80F-00065	Nzhelele	D	VERY HIGH	VERY HIGH	2
A80F-00070		C/D	HIGH	MODERATE	1
A50H-00110/Limpopo	Limpopo	С	LOW	LOW	1
A80G-00026/Nzhelele	Nzhelele	C/D	VERY HIGH	VERY HIGH	2
A80G-00043		D/E	VERY HIGH	VERY HIGH	2
A80G-00048	Nzhelele	C/D	VERY HIGH	VERY HIGH	2
A80G-00053	Nzhelele	С	VERY HIGH	VERY HIGH	2
A80G-00054	Tshishiru	Е	VERY HIGH	VERY HIGH	2
A80H-00060	Luphephe	D	VERY HIGH	MODERATE	2
A80H-00064	Nwanedi	D/E	VERY HIGH	MODERATE	2
A50H-00110/Limpopo	Limpopo	С	LOW	LOW	1
A80J-00028/Nwanedi	Nwanedi	B/C	VERY HIGH	MODERATE	2
A91A-00105	Luvuvhu	D/E	HIGH	VERY HIGH	3
A91B-00119	Luvuvhu	D	HIGH	HIGH	2
A91B-00120	Doringspruit	C/D	HIGH	VERY HIGH	2
A91C-00115	Luvuvhu	D	VERY HIGH	VERY HIGH	3
A91C-00122	Mudzwiriti	С	HIGH	VERY HIGH	3
A91D-00108	Latonyanda	D	HIGH	VERY HIGH	2
A91E-00103	Dzindi	D	HIGH	VERY HIGH	2
A91F-00111	Luvuvhu	D	HIGH	VERY HIGH	2
A91F-00093	Luvuvhu	D	VERY HIGH	VERY HIGH	2
A91G-00078	Mukhase	C/D	HIGH	HIGH	2
A91G-00079	Mbwedi	D/E	VERY HIGH	HIGH	2
A91G-00083		В	HIGH	HIGH	3
A91G-00086	Mutshindudi	D	VERY HIGH	VERY HIGH	2
A91G-00087	Mukhase	D	HIGH	HIGH	2
A91G-00091	Mutshindudi	D	VERY HIGH	HIGH	2
A91G-00092	Mutshindudi	В	HIGH	HIGH	3
A91G-00094	Tshinane	С	HIGH	HIGH	2
A91G-00098	Mutshindudi	Е	VERY HIGH	VERY HIGH	2
A91H-00045	Luvuvhu	C/D	VERY HIGH	VERY HIGH	3
A91J-00040	Luvuvhu	D	VERY HIGH	VERY HIGH	2
A91J-00050	Matsaringwe	С	VERY HIGH	VERY HIGH	2
A91K-00032	Limpopo	B/C	VERY HIGH	VERY HIGH	4
A91K-00035	Luvuvhu	С	VERY HIGH	VERY HIGH	4

sq	River Named in SQ	Wetland PES	Wetland El	Wetland ES	SQ Priority based on internal Wetlands
A91K-00039	Luvuvhu	C/D	VERY HIGH	VERY HIGH	3
A91K-00042	Mashikiri	D	VERY HIGH	VERY HIGH	3
A91K-00056	Saselandonga	С	HIGH	HIGH	3
A91K-00058		С	HIGH	LOW	3
A92B-00051	Mutale	С	VERY HIGH	VERY HIGH	4
A92C-00041	Tshipise	E	VERY HIGH	VERY HIGH	1
A92C-00047	Mutale	D	VERY HIGH	VERY HIGH	1
A92C-00049	Mbodi	D	VERY HIGH	VERY HIGH	1
A92D-00027	Limpopo	С	VERY HIGH	HIGH	3
A92D-00030	Mutale	D/E	VERY HIGH	VERY HIGH	3
B90A-00062		C/D	VERY HIGH	VERY HIGH	3
B90A-00066	Shisha	D/E	HIGH	MODERATE	3
B90B-00080		С	HIGH	MODERATE	3
B90B-00096	Mphongolo	D	HIGH	HIGH	3
B90B-00097		D	HIGH	HIGH	3
B90B-00099		D/E	HIGH	HIGH	3
B90B-00081	Mphongolo	С	VERY HIGH	MODERATE	4
B90B-00082	Mphongolo	Е	HIGH	VERY HIGH	3
B90B-00101	Mphongolo	D	VERY HIGH	VERY HIGH	3
B90C-00104	Shihloti	D	VERY HIGH	VERY HIGH	3
B90C-00106	Phugwane	Е	VERY HIGH	VERY HIGH	3
B90D-00067	Shisha	Е	VERY HIGH	VERY HIGH	3
B90D-00109	Phugwane	С	VERY HIGH	VERY HIGH	3
B90D-00085	Mphongolo	D/E	VERY HIGH	VERY HIGH	3
B90D-00112	Mphongolo	С	VERY HIGH	VERY HIGH	3
B90E-00072	Nkulumbeni	C/D	VERY HIGH	VERY HIGH	3
B90F-00114	Shingwedzi	Е	VERY HIGH	VERY HIGH	3
B90G-00121	Bububu	B/C	VERY HIGH	VERY HIGH	4
B90G-00136	Nshenhene	С	VERY HIGH	VERY HIGH	4
B90G-00144	Tshange	C/D	HIGH	HIGH	3
B90G-00125	Bububu	B/C	VERY HIGH	VERY HIGH	4
B90G-00130	Shingwedzi	B/C	VERY HIGH	VERY HIGH	3
B90G-00124	Shingwedzi	B/C	HIGH	LOW	4
B90H-00147	Dzombo	В	VERY HIGH	LOW	4
B90H-00152	Kumba	B/C	VERY HIGH	VERY HIGH	4
B90H-00113	Mphongolo	С	VERY HIGH	VERY HIGH	3
B90H-00117	Shingwedzi	D	VERY HIGH	VERY HIGH	3
B90H-00145	Shingwedzi	С	HIGH	LOW	3

3.4.3 Resource Unit Prioritisation

The study area comprises 12 IUAs and 16 RUs for wetlands (Figure 3-7). Since wetland priority has been done at the SQ scale, prioritisation of RUs was done by a summation of SQ's within each catchment with Very High priority (rating of 4 in Table 3-12). Thus, the frequency of wetlands of Very High priority within respective RUs was used to prioritise RUs. The results are tabulated in Table 3-13.

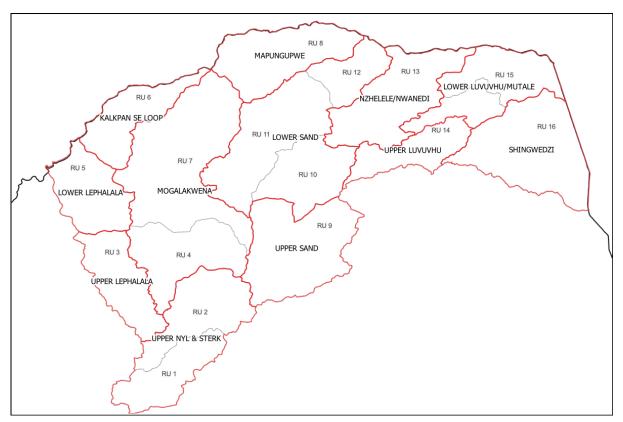


Figure 3-7. Map of the study area showing IUAs (outlined in red) and RUs (outlined in grey).

3.4.4 Wetland Priority Resource Units

The IUAs with most SQ that have Very High priority wetlands, in order of magnitude, are the Shingwedzi, Lower Luvuvhu / Mutale, Mapungubwe and Upper Nyl & Sterk IUAs, all of which have a score of more than 10, and within these the RUs with the highest score, in order of magnitude, are RU16, 8 and 14 (score >10), followed by RU 1, 15, 13 and 3 (score >=5).

Table 3-13. Count of SQs with different levels of wetland priority (1-4) per IUA and RU within respective IUAs.

		Wetland Priority						
IUA / RU	1	2	3	4				
KALKPAN SE LOOP	12	6						
RU 6	12	6						
LOWER LEPHALALA	1	13						
RU 5	1	13						
LOWER LUVUVHU/MUTALE	10	23	45	17				
RU 14	2	13	18	9				
RU 15	8	10	27	8				
LOWER SAND	40	31	64	3				
RU 10	7	7	29					
RU 11	21	19	25	3				
RU 12	12	5	10					
MAPUNGUBWE	13	4	24	13				
RU 8	13	4	24	13				
MOGALAKWENA	70	71	15	7				
RU 4	31	32	8	3				
RU 7	39	39	7	4				
NZHELELE/NWANEDI	22	46	30	5				
RU 13	22	46	30	5				
SHINGWEDZI		7	69	19				
RU 16		7	69	19				
UPPER LEPHALALA	8	24	38	5				
RU 3	8	24	38	5				
UPPER LUVUVHU	2	39	38	3				
RU 14	2	39	38	3				
UPPER NYL & STERK	8	107	19	11				
RU 1		31	12	9				
RU 2	8	76	7	2				
UPPER SAND	7	24	31					
RU 9	7	24	31					

3.5 Groundwater Resource Unit Prioritisation

The framework for RU prioritisation focusses on the prioritisation of river RUs (DWA, 2011). It requires a set of criteria and sub-criteria to be rated to calculate a priority rating for resource units. Therefore, a set of criteria and sub-criteria appropriate to groundwater were selected for the groundwater prioritisation process, based on available datasets. The selected criteria and the relative points applied is shown in Table 3-14. The criteria are summarized as:

- Importance for (human) users: groundwater is relied upon as a "sole supply source" in several areas of the WMA. This is evaluated through assessing the presence of sole-supply towns. In addition to use for domestic supply, groundwater plays an important role in supporting activities contributing to the economy (GDP, job creation) in several areas of the WMA catchment (e.g. commercial agriculture, industrial abstraction). strategic water source areas for groundwater have been defined and take into account areas of high groundwater availability and high or strategic groundwater use (Le Maitre et al, 2019), and these areas are also included as subcriteria.
- Level of surface water groundwater interaction: groundwater has a variable role in supporting
 the environment through discharge to surface water that support Ecological Water
 Requirements (EWRs). Where groundwater has a potential role in contribution to baseflow,
 these areas are prioritised to protect this contribution. In addition, the presence of priority
 wetlands that are likely to be groundwater-fed is also included as sub-criteria.
- Threat posed to users: the various aquifers in the resource unit may be at risk of abstraction that is not maintainable, or of water quality impacts. The threat of water quality impact is considered in the prioritisation through the assessment of water quality data to identify medium to long-term declining trends (completed for the Status Quo phase of the project). The threat of over- abstraction is also considered through the assessment of water level data to identify medium to long-term declining trends. In addition, the stress index (use/recharge) under present day and under likely future conditions is used as an indication of where over-abstraction may be a risk, although this is not a definitive indicator. The future stress index is based on the recommended scenario analysis.
- Practical considerations: to implement and enforce RQOs, they must be measurable. The
 existence of current monitoring points was considered in the prioritisation criteria, although they
 were not strongly weighted.

A challenge applying the rating shown in the table is that some of the sub-criteria refer to data that is spatially discretised below the scale of the groundwater resource unit i.e. the sub-criteria can have a spatial variability across the resource unit. However, only one rating can be applied per resource unit. The sub-criteria category which covers the largest part of the resource unit was assigned.

A final score is derived for each quaternary catchment. The final resource unit prioritisation rating score (0- 100, low to high) has been divided into three categories from 1 (not priority), 2 (low priority), 3 (high priority). The categories were based on the distribution of the final scores, and a cut-off value of >50.0 (out of 100) was selected as representative of high priority 3.

In addition, some quaternary catchments were amended manually based on the following reasoning:

 A quaternary catchment was considered a high priority (i.e., A80F) where it was flagged for development and the establishment of baseline data with new monitoring networks will be required.

Table 3-14. Criteria and sub-criteria used to prioritise groundwater resource units, showing the rating applied (following DWA, 2011).

rating applied (TOHOWING	DWA, 2011).		
Criterion	Weights (%)	Sub-criteria	Weights (%) (equivalent points)	Rating guidelines
				0 – RUs which do not have groundwater supply schemes
		Rus most important in supporting 'sole- supply' settlements	60 (15 points)	0.5 – RUs supporting some groundwater supply schemes (1-2)
		11.7		1 – RUs supporting several groundwater supply schemes (>2)
		RUs within strategic		0 - RUs outside of SWSA-GW
Importance for users	25	water source areas for groundwater (high groundwater availability & strategic use)	20 (5 points)	1 – RUs within SWSA-GW
		RUs most important in supporting activities contributing		0 – RUs which do not directly support any activities which contribute to economy [as indicated by <0.1l/s/km2]
		to economy (GDP, job creation) (e.g. commercial agriculture, industrial	20 (5 points)	0.5 – RUs which moderately support activities which provide a contribution to economy [as indicated by 0.1-0.3l/s/km2]
		abstraction, bulk abstraction by water authorities)		1 – RUs which significantly support activities which contribute to the economy [as indicated by >0.3l/s/km2]
		Medium to Long-term declining trend in water or piezometric levels	35 (10.5 points)	0 – RUs where no trend is visible, or where no data is available to assess trend
				0.5 – RUs where short-term trend is potentially visible, or minor
				1 – RUs where long-term trend is visible
		Medium to Long-term	35 (10.5	0 – RUs where no trend is visible, or where no data is available to assess trend
Throat posed		increasing trend in natural water quality	points)	0.5 – RUs where short-term trend is potentially visible, or minor
Threat posed to users	30			1 – RUs where long-term trend is visible
				0 – RUs where stress is low (category I)
		Presence of high stress category	15 (4.5 points)	0.5 – RUs where stress is moderate (category II)
		(currently)	,	1 – RUs where stress is high (category III)
				0 – RUs where stress is low (category I)
		Presence of high stress category	15 (4.5 points)	0.5 – RUs where stress is moderate (category II)
		(future)	. ,	1 – RUs where stress is high (category III)
Practical		Availability of water quality monitoring	50 (7.5	0 – RUs where no resource quality information exists
Considerations	15	data located within RU	points)	0.5 – RUs for which a moderate level of resource quality information exists (1-7 points)

49 August 2025

Criterion	Weights (%)	Sub-criteria	Weights (%) (equivalent points)	Rating guidelines
				1 – RUs for which there is a good availability of resource quality information (>7 points)
				0 – RUs where no water level information exists
		Availability of water level monitoring data	50 (7.5 points)	0.5 – RUs for which a moderate level of water level information exists (1-3 points)
		located within RU	pointo)	1 – RUs for which there is a good availability of water level information (>3 points)
		Relevance of		0 – RUs without relevant groundwater contribution (low GWBF/EWR) (GWBF/RE < 4%)
		groundwater contribution to maintain required low flow conditions	50 (15 points)	0.5 – RUs where groundwater contribution supports low flow condition (GWBF/RE moderate, 4-25%)
Level of surface water	30			1 – RUs where groundwater contribution is crucial to maintain low flow condition (GWBF/RE moderate, >25%)
groundwater interaction		Relevance of		0 – RUs without potential groundwater- dependent systems (e.g. Wetlands)
		groundwater contribution to maintain priority	50 (15 points)	0.5 – RUs with some potential groundwater-dependent systems (e.g. Wetlands) (<200ha)
		groundwater- dependent ecology		1 – RUs with potential of groundwater- dependent systems (e.g. Wetlands) (>200ha)

3.5.1 Groundwater Priority Resource Units

Full results of the prioritisation process, showing the scoring system per priority resource unit, are shown spatially in Figure 3-8 and listed in Table 3-15. A total of 43 quaternary catchments are prioritised, based on the priority ranking approach followed. As discussed in section 0 manual selection of some quaternary catchments where done based on the availability of baseline data as well as the overall significance of groundwater. The reason for the prioritisation of an area and the existence of baseline data informs the type of RQOs to be developed. In cases where there is insufficient baseline data on which to establish an RQO, narrative RQOs can be developed along with monitoring recommendations to establish the baseline and implement more detailed RQOs in future. Where there are no quaternary catchments prioritised for the development of RQOs it is recommended that best practice wellfield/groundwater management guidelines are implemented.

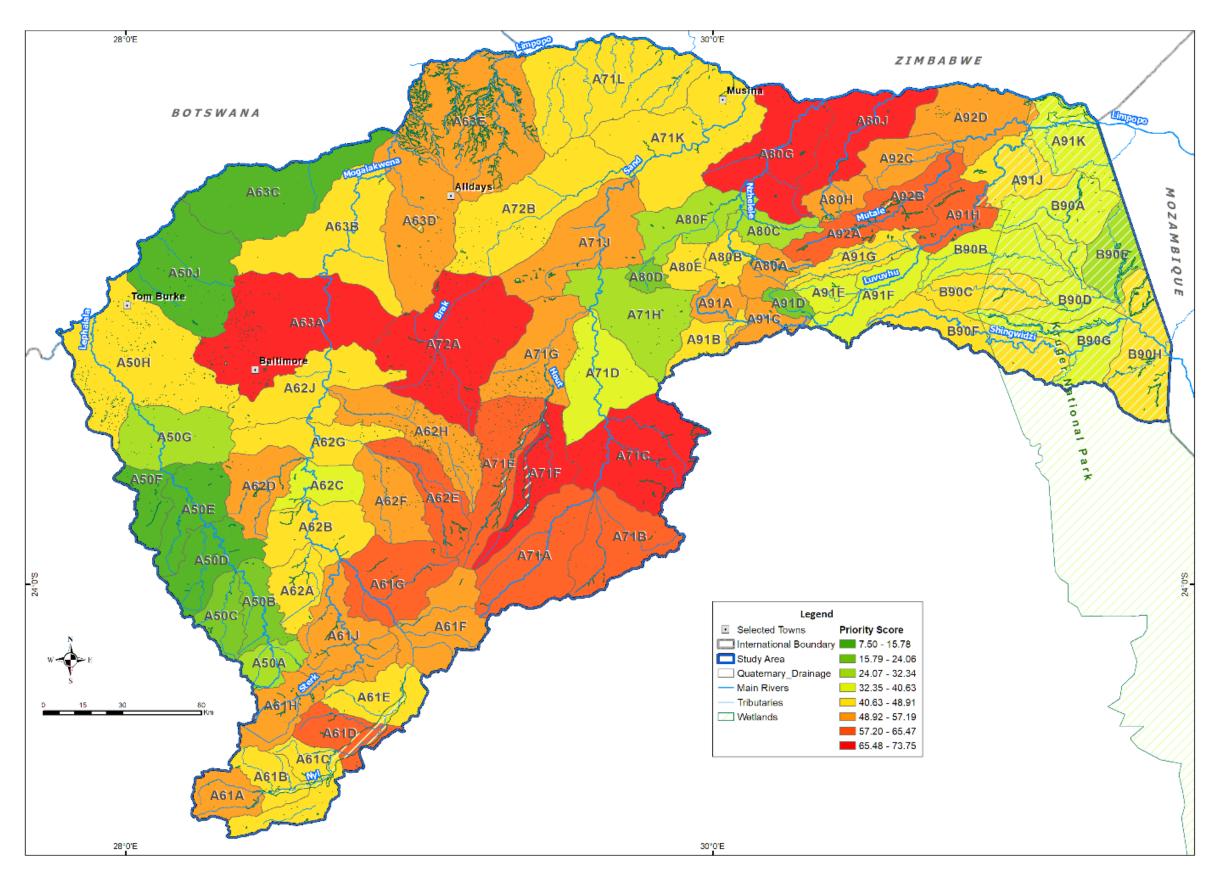


Figure 3-8. Map of study area showing prioritised groundwater units

Table 3-15. Prioritised groundwater units based on criteria scores and ratings

Table 3-1	5. Prioritised	groundwater units												
		Criteria:	<u>Im</u>	portance for users	5		Threat pose				nsiderations	Level of SW-C		_
		Criteria weight:		25	00	0.5	30		45		15	3		Duiouitu
Quat	RU Priority (1 to 3)	Sub-criteria weight: Score	60 Supporting Groundwater Schemes	20 Presence of SWSA-GW	20 Supporting economic activities	35 Declining trend in water or piezometric levels	35 Increasing trend in water quality	15 Presence of high stress category (current)	15 Presence of high stress category (future)	50 Availability of water level monitoring data	50 Availability of water quality monitoring data	50 Relevance of groundwater to maintain low flow conditions	50 Relevance of groundwater contribution to potential GEP	Priority
A50A	2	26.3	0.5	0	0	0	0	0	0	0	0.5	1	0	
A50B	2	22.5	0.5	0	0	0	0	0	0	0	0	1	0	
A50C A50D	2	18.8 7.5	0	0	0	0	0	0	0	0	0.5	0.5	0	
A50E	1	7.5	0	0	0	0	0	0	0	0	0	0.5	0	
A50F	1	11.3	0	0	0	0	0	0	0	0	0.5	0.5	0	
A50G	2	27.8	1	0	0	0	0.5	0	0	0	1	0	0	
A50H	2	46.0	1	0	0.5	0	0.5	0.5	0.5	0.5	1	0	0.5	Pr.
A50J	1	11.3	0.5	0	0	0	0	0	0	0	0.5	0	0	
A61A	3	51.3	1	1	1	0	0	0	0	0	0.5	1	0.5	Pr.
A61B	2	43.8	1	1	1	0	0	0	0	0	0.5	1	0	Pr.
A61C	2	48.8	1	1	0.5	0	0	0	0	0	0.5	1	0.5	Pr.
A61D	3	62.5	1	1	1	0	0	0	0	0	1	1	1	Pr.
A61E A61F	3	45.8 50.3	1	1 1	0.5 0.5	0	0 0.5	0.5 0	0.5 0	0	0.5		0	Pr. Pr.
A61G	3	62.0	<u> </u>	0	0.5 1	0	0.5	0.5	1	0	1	1	0.5	Pr.
A61H	3	51.3	1	0	0.5	0	0.0	0.0	0	0	0.5	1	1	Pr.
A61J	3	53.8	<u>.</u> 1	1	0	0	0	0	0	0	0.5	1	1	
A62A	2	45.0	1	0	0	0	0	0	0	0	1	1	0.5	
A62B	2	45.0	1	0	0	0	0.5	0	0.5	0	1	0.5	0.5	
A62C	2	35.3	1	0	0	0	0.5	0	0	0	1	0.5	0	
A62D	3	52.5	1	0	0	0	0.5	0	0.5	0	1	0.5	1	_
A62E	3	60.3	1	0	0.5	0	0.5	0	0	0	1	1	1	Pr.
A62F A62G	3 2	56.5 44.3	11	0	0.5 0	0.5	1	0.5	0.5 0	0.5 0.5	1	0.5	0	
A62H	2	49.0	<u> </u>	0	0.5	0	0.5	0	0	0.5	1	0.5 0.5	0.5	
A62J	2	42.0	<u> </u>	0	0.5	0.5	1	0	0	0.5	1	0.5	0.5	
A63A	3	68.8	<u>.</u> 1	0	1	1	1	1	1	0.5	1	0	0.5	Pr.
A63B	2	42.0	1	0	0	1	0.5	0	0	0.5	1	0	0	
A63C	1	11.3	0	0	0	0	0	0	0	0.5	1	0	0	Pr.
A63D	2	49.0	1	0	0.5	0	0.5	0	0	0.5	1	0	1	Pr.
A63E	2	49.0	1	0	0.5	0	0	1	1	0.5	0.5	0	11	Pr.
A71A	3	61.0	1	1	1	1	0.5	1	1	0.5	1	0	0	Pr.
A71B A71C	3	58.0 65.5	1	1	<u>1</u> 1	0	0.5 0.5	1	1	0.5 0.5	1	0	0.5	Pr.
A71D	2	39.0	<u> </u>	1	0.5	0	0.5	1	1	0.5	0.5	0	0	Pr. Pr.
A71E	3	63.0	1	1	0.5	0	0.5	1	1	0.5	1	0	1	Pr.
A71F	3	70.8	<u>.</u> 1	1	1	0.5	0.5	1	1	0.5	1	0	1	Pr.
A71G	3	53.5	0.5	1	1	1	0.5	1	1	0.5	1	0	0	Pr.
A71H	2	31.5	0.5	1	0.5	0	0.5	0	0	0.5	1	0	0	Pr.
A71J	2	49.3	0.5	0	1	0.5	0	1	1	0.5	0.5	0	1	Pr.
A71K	2	45.5	0.5	0	1	0.5	0	1	1	0.5	1	0	0.5	Pr.
A71L	2	41.8	0.5	0	1	0.5	0	1	1	0.5	0.5	0	0.5	Pr.
A72A A72B	3	73.8 42.3	1 0.5	1	1 0.5	0.5	0	0.5	0.5	0.5 0.5	0.5	0 0.5	0.5 0.5	Pr.
A72B A80A	3	42.3 54.0	0.5 1	0	0.5	0.5	0	0.5	0.5	0.5	0.5	0.5	0.5 1	Pr. Pr.
A80B	2	44.3	1 1	1	0.5	0.5	0.5	0	0	0.5	1	0	0	FI.
A80C	2	28.8	<u>.</u> 1	0	0.5	0.5	0.3	0	0	0.5	1	0	0	
A80D	2	20.0	0.5	1	0	0	0	0	0	0.5	0.5	0	0	
A80E	2	44.3	11	1	0.5	0.5	0.5	0	0	0.5	1	0	0	
A80F	2	31.8	1	0	0.5	0	0	0.5	1	0.5	0.5	0	0	Pr.
A80G	3	70.8	1	0	0.5	0.5	0	0.5	1	0.5	1	1	1	Pr.
A80H	3	56.5	1	0	0.5	0.5	0	0	0	0.5	1	1	0.5	
A80J	3	73.5	1	0	0	0.5	0.5	0.5	1	0.5	1	1	1	Pr.

		Criteria:	lm	portance for users	5		Threat posed	l to users		Practical co	nsiderations	Level of SW-G	W interaction	
		Criteria weight:		25			30			1	5	30)	
	RU Priority	Sub-criteria weight:	60	20	20	35	35	15	15	50	50	50	50	Priority
Quat	(1 to 3)	Score	Supporting Groundwater Schemes	Presence of SWSA-GW	Supporting economic activities	Declining trend in water or piezometric levels	Increasing trend in water quality	Presence of high stress category (current)	Presence of high stress category (future)	Availability of water level monitoring data	Availability of water quality monitoring data	Relevance of groundwater to maintain low flow conditions	Relevance of groundwater contribution to potential GEP	
A91A	3	57.0	0.5	1	0.5	1	0	1	1	0.5	0.5	1	0	Pr.
A91B	2	48.3	0.5	1	1	0	0	0.5	0.5	0.5	1	1	0	Pr.
A91C	3	50.5	0.5	1	1	0.5	0	1	1	0.5	1	0.5	0	Pr.
A91D	2	20.0	0.5	0	1	0	0	0	0	0.5	0.5	0	0	
A91E	2	39.0	0.5	1	0.5	0.5	0	0	0	0.5	1	0.5	0	Pr.
A91F	2	36.0	1	0	0	0	0	0	0.5	0.5	1	0.5	0	Pr.
A91G	2	46.3	1	1	0	0.5	0	0	0.5	0.5	1	0	0.5	Pr.
A91H	3	63.8	1	0	0	0.5	0	0	0.5	0.5	1	1	1	Pr.
A91J	2	42.8	0.5	0	0	0.5	0	0	0	0.5	0.5	0.5	1	
A91K	2	33.8	0	0	0	0	0	0	0	1	0.5	0.5	1	
A92A	3	59.0	1	1	0	0.5	0	0	0	0.5	1	0.5	1	
A92B	3	60.0	1	0	0	0	0	0	0	1	1	1	1	Pr.
A92C	3	55.5	1	0	0	0.5	0.5	0	0	1	1	1	0	Pr.
A92D	2	49.5	1	0	0	0	0.5	0.5	1	1	1	0.5	0	Pr.
B90A	2	39.0	0.5	0	0	0.5	0	0	0	1	0.5	0	1	
B90B	2	35.3	0.5	0	0	0.5	0	0	0	1	1	0.5	0	Pr.
B90C	2	48.0	0.5	0	0	0.5	0.5	0	0	1	1	0.5	0.5	
B90D	2	33.0	0	0	0	1	0	0	0	1	0	1	0	
B90E	2	27.8	0	0	0	0.5	0	0	0	1	0	0	1	
B90F	2	48.0	0.5	0	0	0.5	0.5	0	0	1	1	0.5	0.5	Pr.
B90G	2	39.0	0.5	0	0	0.5	0	0	0	1	0.5	0	1	
B90H	2	44.3	0	0	0	1	0	0	0	1	0.5	0.5	1	

Pr = priority

3.6 Priority Resource Units in each IUA

A summary of the resource units that were prioritised in each IUA is provided in Table 3-16.

Table 3-16. Priority resource units in the study area

IUA	River Resource Unit	Dam Resource Unit	Wetland Resource Unit	Groundwater Resource Unit
	RRU-Riv11	Offic		Nesource Offic
	A50B-00262			
Upper Lephalala	RRU-Riii3 - A50H-			
	00110			
	RRU-Ri8			A50-2 (A50G)
Lower Lephalala	A50H-00110			A50-3 (A50H)
	RRU-Rvi1			· ·
Kalkpan se Loop	A63C-00033			A50-4 (A63C)
	RRU-Ri4 - A61J-	Doorndraai	Nyl River floodplain	A61-1
	00267	Doomidiaai	Nyi Mver noodpiani	(A61A,B,C,D,E)
	RRU-Ri1	Donkerpoort	Nyl Pans	A61-2 (A61H)
	A61B-00489	20	,	7.0.2 (7.0)
Upper Nyl/Sterk	RRU-Ri1-1 - A61B-		Wonderkrater	A61-3 (A61F, G)
,	00552 RRU-Ri3 - A61G-			, ,
	00297			
	RRU-Ri5			
	A61G-00248			
	RRU-Ri14	a		
N4 1 1	A63A-00071	Glen Alpine	Mokamole	A62-2 (A62E)
Mogalakwena	RRU-Rii3			ACO 4 (ACOA D)
	A63D-00034			A63-1 (A63A,D)
	RRU-Rvi2 - A63E-		Maloutswa Floodplain	A63/71-3 (A63E,
Mapungubwe	00011			A71L)
Maparigabwo	RRU-Riv32		Kolope riverine	
	A63E-00008		wetlands	A74 4 (A74A D)
	DDLL Div.46 A746			A71-1 (A71A, B)
Upper Sand	RRU-Riv16 - A71C- 00156			A71-2 (A71C, D, H)
	00130			A71-3 (A71E, F, G, A72A)
	RRU-Ri20			,
	A71D-00118			A71-4 (A71J, A72B)
	RRU-Ri22			A74 5 (A7416)
Lower Sand	A71D-00118			A71-5 (A71K)
	RRU-Ri25			
	A71K-00019			
	RRU-Ri26 - A80G-	Nzhelele		A80-1 (A80A, F)
	00053			(22 ,)
Niele el el e /Nivvere e	RRU-Riv33 - A80G- 00054			A80-2 (A80G)
Nzhelele/Nwane di	RRU-Ri27			
ui	A80G-00026			A80-3 (A80J)
	RRU-Ri28			
	A80J-00028			
	RRU-Riii6	All ' '		A91-1 (A91A, B, C,
Hoper Language	A91D-00108	Albasini		E, F, G)
Upper Luvuvhu	RRU-Ri30	Vanda		
	A91G-00091	Vondo		
	RRU-Ri32	Mvuwe	Luvuvhu Floodplain	A91-2 (A91H, A92B,
Lower	A91H-00045	IVIVUVVC	(Makuleke)	C, D)
Luvuvhu/Mutale	RRU-Rvii33 A92B-00051	Nandoni	Lake Fundudzi	

EVALUATION OF RESOURCE UNIT REPORT - FINAL

IUA	River Resource Unit	Dam Resource Unit	Wetland Resource Unit	Groundwater Resource Unit
	RRU-Ri33		Mutale wetlands	
	A92B-00051		wutale wetlands	
	RRU-Ri34 A92D-00030			
	RRU-Ri36			
	A91K-00035			
Chinanus dei	RRU-Riv28 B90H-00113		Malahlapanga	B90-1 (B90B, F)
Shingwedzi	RRU-Ri37		Bububu	
	B90H-00145		Вирири	

4 APPROACH TO SUB-COMPONENT PRIORITISATION AND INDICATOR SELECTION OVERVIEW

There is a wide range of sub-components for which RQOs can be set, however it is not necessary nor practical to set RQOs for all sub-components in all selected resource units. The Resource Unit Evaluation Tool, which is a decision support tool (DWS, 2011) was used to evaluate and prioritise sub-components for RQO determination. Sub-components for dams, wetlands and groundwater were also selected through independent approaches based on assessment and evaluation of overall priorities.

The Tool has two primary functions: (i) to determine the level of threat posed to each of the sub-components by impacting activities in the catchment and (ii) to identify which sub-components should be protected to support water resource dependent activities and/or maintain the integrity and ecological functioning of the water resource.

The Tool was applied using desktop knowledge, local knowledge, specialist studies, and a detailed understanding of the catchments. The assessment was undertaken in a workshop environment with technical specialists and will be presented and discussed with catchment managers and key stakeholders. The overall priorities identified through the evaluation process were used to guide the selection of sub-components for RQO determination. Once the sub-components were selected, suitable indicators for monitoring were then identified.

4.1 River sub-component prioritisation and indicator selection

Table 4-1 indicates a generic list of components, sub-components and indicators that are generally important to rivers. This generic list forms the basis for customising components for each specific high priority river resource unit.

Table 4-1, Generic river sub-components, indicators and reasons for selection

Component	Sub-component	Indicator	Reason for selection
Motor quantity	Low flows	Maintenance low flows (MCM)	This is part of the Reserve baseline
Water quantity	High flows	Maintenance high flows (MCM)	information and standard for measuring all other ecosystem responses.
	Nutrients	Total inorganic nitrogen	High nutrient concentrations have a significant impact on the structure and functioning of biotic communities because they stimulate growth of algae and aquatic plants. Nitrogen from fertilisers leaches
		Orthophosphate	more
Water quality	Salts	Electrical conductivity (EC)	EC is an indicator of the salinity or concentration of dissolved salts. It is affected by the geology of a catchment and
	Cane	Total Dissolved salts	mining, irrigation return-flows, industrial effluents, runoff from urban areas and urban sprawl.
	System variables	Dissolved oxygen	The maintenance of adequate dissolved oxygen (DO) concentrations is critical for the survival and functioning of the aquatic biota because it is required for the respiration of all aerobic organisms. The DO concentration

Component	Sub-component	Indicator	Reason for selection
			provides a useful measure of the health of an aquatic ecosystem.
		рН	Indicates the acidity and alkalinity and determines the solubility of metals in the water.
		Water temperature	Temperature is important for the survival of biota such as fish and invertebrates, it affects biological processes and the solubility of dissolved oxygen, metals and toxic substances.
	Toxins/Biocides	Unionised ammonia Pesticides Metals Atrazine Endosulfan	Biocides are chemical substances, mixtures, or microorganisms intended to control the growth of pest organisms.
	Pathogens	Escherichia coli Faecal coliforms	Risk to human water users (waterborne diseases)
		Bed erosion	The process of lowering the active channel bed elevation in relation to flood features, possibly disconnecting the floodplain/flood features from the channel through increased channel volume. This indicator informs other geomorphic indicators.
		Bank erosion	The process of destabilisation and erosion of the banks and flood benches resulting in a steeper less stable bank and a reduction in flood bench and floodplain width. This indicator informs other geomorphic indicators.
		Bed sediment size	The median size of sediment on the bed. Armouring will increase the size of bed sediment, while siltation will reduce the size of the bed sediment. This indicator shows trends in the median bed sediment size.
Habitat	Geomorphology	Embeddedness	Reduction in interstitial spaces between larger clasts due to infilling with fine sediment, smothering coarse habitat associated with riffles, runs, glides and pools. This indicator shows the extent to which coarse habitats are covered with fine sediment and not available to biota.
		Pool depth	The geomorphic depth of pools in relation to riffle elevation. This indicates whether pool depth/volume changes during low flow periods.
		Backwaters and secondary channels	Slow flowing habitats along the channel margins or on the flood features. This indicates whether slow flowing habitats are filled in with sediment and not available when inundated.
		Inset bench and bars	The area/extent of fine sediment deposits along the channel margin that are inundated by small floods. These are colonised by marginal vegetation and form a habitat for a range of biota during small floods and high baseflows.

Component	Sub-component	Indicator	Reason for selection
		Inundated sandy habitat	Inundated sandy habitat, on inset benches and sand bars, are important habitat for some aquatic plants and animals.
		Inundated cobble habitat	Inundated cobble habitats important habitat for some of the aquatic biota.
		Riffles	Coarse sediment habitat in fast flow. This habitat is essential for several invertebrate and fish species to complete their life cycles.
		Flood bench	Infrequently inundated higher-lying fine sediment benches which form habitat for dry bank riparian plants, various biota and are a refuge for aquatic organisms during flood events.
	Riparian vegetation Aquatic	Algae (biofilms and filamentous)	Algae provide food for instream fauna (fish and invertebrates) but can also affect habitat quality detrimentally.
	vegetation Aquatic	Aquatic vegetation	Aquatic vegetation provide habitat, including protection and breeding sites, and food for fish and invertebrates.
		Marginal zone graminoids	This guild includes grasses, sedges and reeds and is important for bank stabilisation, habitat creation for aquatic fauna (both inundated instream and overhanging vegetation) and for food (seeds, fruits, rotting leaf material).
		Marginal zone broad-leaf plants	This guild includes broad-leaved hydrophytes that grow in the water as emergent vegetation or along the edges and provide important instream habitat for fish and aquatic invertebrates.
	Riparian vegetation Wet Bank (inter- annual floods)	Marginal zone woody plants	Marginal zone trees are important for bank stabilization, flood attenuation and provide overhanging shelter for instream fauna, particularly fish.
Biota		Flood feature graminoids	This guild includes grasses, sedges and reeds growing in the lower zone. Non-woody vegetation is important for bank stabilization, grazing for animals and birds, habitat creation and for food (seeds, fruits, rotting leaf material) and habitats for fish spawning during flooding.
		Flood feature woody plants	Trees and shrubs are important for bank and sediment stabilization, flood attenuation and provide shelter and nesting sites for riparian fauna.
	Riparian vegetation	Macro-channel bank riparian trees	MCB trees and shrubs are important for bank and sediment stabilization, flood attenuation and provide shelter and nesting sites for riparian fauna.
	Dry Bank (inter- annual floods)	Macro-channel bank terrestrial woody plants	Terrestrial trees on the MCB should be transient and indicate terrestrialisation
	Riparian vegetation (whole zone)	Alien invasive plant species	Mostly focussed on notorious aquatic species and/or woody perennial species.
	Fish	FRAI score	To assess the health and integrity of fish communities in a specific area by comparing

Component	Sub-component	Indicator	Reason for selection
			the current fish assemblage to a reference condition (a natural or pristine state)
		Overall fish health	A composite measure of fish integrity.
		Species diversity	A robust measure of biodiversity.
		Key species	Identification of the fish species that would be most impacted by flow-derived transformations within a river reach and consider them as "key species". (Easily identified and representative of a guild).
		MIRAI Category and Score	The MIRAI is used to determine the Invertebrate ecological condition. It is done by integrating the ecological requirements of the invertebrate taxa in a community or assemblage and their response to modified habitat conditions
		SASS5 Total Score and ASPT	This is a rapid bioassessment technique used to assess the health of rivers by examining benthic macroinvertebrates
	Macroinvertebrates	Key taxa and abundance	Key taxa are those that are particularly important or abundant within a specific environment or community
		Taxon dominance	Describes a scenario where a particular species or group of species (a taxon) holds a disproportionately large presence and influence within a community compared to other species, impacting environmental conditions, diversity and ecosystem functioning.

4.1.1 Selected user sub-components and indicators for rivers

Sub-components and indicators were selected to represent each of the high priority river RUs (Table 4-2), based on current monitoring taking place in the area, available data that can be expanded on to assess the ecological health of the resource unit, and if land impacts warrant an assessment of the indicator. More detail on the choice of sub-components and indicators is given in APPENDIX B. For many of the high priority RUs, baseline data exists, and continued monitoring will need to be undertaken to ensure the target ecological categories are met. For these RU, narrative RQOs and Numerical Limits will be set. For eleven of the RUs, no baseline data exists and for these sites it would be important to set up a baseline monitoring programme. Recommended indicators for monitoring are outlined in Table 4-2. After a few years of collecting monitoring data, it would be possible to develop the numerical RQO for each site.

Twenty-four RUs were rated medium priority. Over time, a baseline monitoring programme should be established for these RUs after which RQOs can be developed. Recommended indicators for monitoring are outlined in Table 4-3. The monitoring of the high and medium priority RUs will provide good coverage for management of the area.

The PES, EI and ES are recommended to be assessed at each review of the PESEIS Desktop Spreadsheet Model to determine if there are any changes to the river condition for those RUs at a low priority.

59 August 2025

Table 4-2. Sub-components and indicators proposed for the high priority river resource units

rable 4-2. Sub	-components ar	ia ir	laica	itors		opos	sea	ior t	ne r	lign	pric	ority	rive	r res	sour	ce t	ınııs														
	IUA		Upper Lepnalala	Lower Lephalala	Kalkpan se Loop			Upper Nyl/Sterk				модагак wena		Mapungubwe	Upper Sand		Lower Sand										Luvuvhu/Mutale				Sningwedzi
	Unit	RRU-Riv11	RRU-Riii3	RRU-Ri8	RRU-Rvi1	RRU-Ri4	RRU-Ri1	RRU-Ri1-1	RRU-Ri3	RRU-Ri5	RRU-Ri14	RRU-Rii3	RRU-Rvi2	Riv32	RRU-Riv16	RRU-Ri20	RRU-Ri22	RRU-Ri25	RRU-Ri26	RRU-Riv33	RRU-Ri27	RRU-Ri28	RRU-Riii6	RRU-Ri30	RRU-Ri32	RRU-Rvii33	RRU-Ri33	RRU-Ri34	RRU-Ri36	RRU-Riv28	RRU-Ri37
Sub- component	Indicator																														
Low flow	Maintenance low flow	Х		X	Х		Х			Х	Х	Х		X		Χ		Х			Χ	Χ	Х	Х	Х		Х	Х	Х		Х
High flow	Maintenance high flow	Х		Х	Х		Х			Х	Х	Х		Х		Χ		Х			Χ	X	Х	Х	Х		Х	Х	Х		Х
	Discharge		Χ			Χ		Х	Х				Х		Χ	Χ	Χ		Χ	Χ						Χ				Х	
	IHI score		Х			Х		Х	Х				Х		Χ	Χ	Χ		Χ	Х						Χ				Х	
	GAI Score	Х					Х			Х	Х							Х			Χ	Х	Х	Х	Х		Х	Х	Х		Х
	Bed erosion	Х		Χ	Х		Х			Х	Х	Х		Χ		Χ		Х			Χ	Х	Х	Х	Х		Х	Х	Х		Х
Coomorpholo	Bank erosion	Х		Х	Х		Х			Х	Х	Х		Х		Х		Х			Χ	Х	Х	Х	Х		Х	Х	Х		Х
Geomorpholo gy	Flood bench	Х		Х			Х			Х	Х	Х				Χ		Х			Χ	Χ	Х	Х	Х		Х	Х	Х		Х
	Sediment size	Х		Х			Х			Х	Х	Х				Χ		Х			Χ	Χ	Х	Х	Х		Х	Х	Х		Х
	Pool depth	Х		Х			Х			Х	Х	Х						Х			Х	Х	Х	Х	Х		Χ	Х	Х		Х
	Embeddedness	Х		Х			Х			Х	Х	Х						Х			Χ	X	Х	Х	Х		Х	Х	Х		Х
Salts	Electrical conductivity (EC)	X	х	X	x	х	х	х	х	X	х	х	х	X	X	х	X	X	Х	х	х	X	X	X	Х	X	X	х	х	X	х

	IUA		Upper Lepnalala	Lower Lephalala	Kalkpan se Loop			Upper Nyl/Sterk				модагакwепа		Mapungubwe	Upper Sand		Lower Sand							opper Luvuvnu			Lower Luvuvhu/Mutale				Sningwedzi
1	Resource Unit	RRU-Riv11	RRU-Riii3	RRU-Ri8	RRU-Rvi1	RRU-Ri4	RRU-Ri1	RRU-Ri1-1	RRU-Ri3	RRU-Ri5	RRU-Ri14	RRU-Rii3	RRU-Rvi2	Riv32	RRU-Riv16	RRU-Ri20	RRU-Ri22	RRU-Ri25	RRU-Ri26	RRU-Riv33	RRU-Ri27	RRU-Ri28	RRU-Riii6	RRU-Ri30	RRU-Ri32	RRU-Rvii33	RRU-Ri33	RRU-Ri34	RRU-Ri36	RRU-Riv28	RRU-Ri37
Sub- component	Indicator																														
Nutrients	Total Inorganic nitrogen (TIN)	х	х	Х	X	X	х	Х	х	х	х	х	X	Х	X	X	X	Х	Х	Х	х	X	Х	х	х	х	х	х	х	х	Х
	Orthophosphate (PO ₄ -P)	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х
	Dissolved oxygen	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
System	pН	Х	Χ	Χ	Χ	Χ	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ
variables	Water temperature	Х	х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	TSS																										Х		Х		Х
	Ammonia (NH3-N)	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Toxins	Atrazine	Х	Х	Χ	Χ	Χ	Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Χ	Χ	Х	Χ	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Endosulfan	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Pathogens	Escherichia coli (E coli)	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х		X	Х	Х	Х	X	X	Х	X	X	Х	Х	Х	Х	Х	Х	Х	Х
Famogens	Faecal coliforms	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

	IUA		Upper Lepnalala	Lower Lephalala	Kalkpan se Loop			Upper Nyl/Sterk				Mogalahwella	ond some	Mapailgabwe	Upper Sand		Lower Sand			ibonew/N/ololo4vN			4				Lower Luvuvhu/Mutale				Simgwedzi
	Unit	RRU-Riv11	RRU-Riii3	RRU-Ri8	RRU-Rvi1	RRU-Ri4	RRU-Ri1	RRU-Ri1-1	RRU-Ri3	RRU-Ri5	RRU-Ri14	RRU-Rii3	RRU-Rvi2	Riv32	RRU-Riv16	RRU-Ri20	RRU-Ri22	RRU-Ri25	RRU-Ri26	RRU-Riv33	RRU-Ri27	RRU-Ri28	RRU-Riii6	RRU-Ri30	RRU-Ri32	RRU-Rvii33	RRU-Ri33	RRU-Ri34	RRU-Ri36	RRU-Riv28	RRU-Ri37
Sub- component	Indicator																														
Riparian Vegetation - Aquatic zone	Key species	Х																									Х				
	Dominant vegetation	Х			Х		Х			Х	Х	Х												Х	Х		Х	Х			
	Key species	Х			Х		Х			Χ	Χ	Х												Х	Х		Х	Х			
Riparian	Alien plant species	Х			Χ		Х			Χ	Χ	Х												Х	X		X	Х			
vegetation - Marginal	Terrestrial woody cover	Х			Х		Х			Χ	Х	Х												Х	X		X	Х			
zone	Indigenous woody	Х			Х		Х			Χ	Х													Х	X		X	Х			
	Non-woody cover	Х			Х		Х			Χ	Х													Х	X		X	Х			
	Reed cover	Х			Х		Х			Х	Χ	Х												Х	Х		Х				
Riparian	Dominant vegetation			Х												Х		Х			Х	Х	Х						Х		Х
Vegetation - Marginal	Key species			Χ												Χ					Χ	Χ	Χ						Х		
Zone (bed)	Alien plant species			Х												Х		X			Х	Х	X						Х		Х

	IUA		Upper Lepnalala	Lower Lephalala	Kalkpan se Loop			Upper Nyl/Sterk				Mogalarwella	omding and and	Mapungubwe	Upper Sand		Lower Sand			ibonew/N/ololod+N				Opper Edvavid			Lower Luvuvhu/Mutale			1	Sningwedzi
	Unit	RRU-Riv11	RRU-Riii3	RRU-Ri8	RRU-Rvi1	RRU-Ri4	RRU-Ri1	RRU-Ri1-1	RRU-Ri3	RRU-Ri5	RRU-Ri14	RRU-Rii3	RRU-Rvi2	Riv32	RRU-Riv16	RRU-Ri20	RRU-Ri22	RRU-Ri25	RRU-Ri26	RRU-Riv33	RRU-Ri27	RRU-Ri28	RRU-Riii6	RRU-Ri30	RRU-Ri32	RRU-Rvii33	RRU-Ri33	RRU-Ri34	RRU-Ri36	RRU-Riv28	RRU-Ri37
Sub- component	Indicator																														
	Non-woody cover																				Х										
	Terrestrial woody cover			Х												Х		Х			Χ	Х	Χ						х		х
	Reed cover			Х												Χ		Х			Х	Χ	Χ						Х		Х
	Dominant vegetation	Х			Х					Χ	X			Χ		Χ					Χ	Χ		X	Х		Х	X			
	Key species	Х			Х					Χ	Х			Х		Χ					Χ	Χ		Х	Х		Х	Х			
Riparian Vegetation	Alien plant species	Х			Х					Χ	X			Χ		Χ					Χ	Χ		X	Х		Х	X			
Non-marginal zone (lower - flood	Terrestrial woody cover	Х			Х					Χ	X			Χ		Χ					Χ	Χ		X	Х		Х	X			
benches)	Indigenous woody cover	Х			Х					Χ	X													X	Х		Х	X			
	Non-woody cover	Х			Х					Х	Х					Х					Х			Х	Х		Х	Х			
Riparian vegetation - Non-marginal	Dominant vegetation	Х	_	Х	Х		Х			Х	Х	Х		Х		Х		Х			Х	Х	Х	Х	Х		Х	Х	х		Х
zone (upper - banks)	Alien plant species	Χ		X	X		X			X	X	Х		X		X		Х			Χ	Χ	X	Х	Х		Х	X	х		Х

	IUA		Upper Lepnalala	Lower Lephalala	Kalkpan se Loop			Upper Nyl/Sterk				модагакwепа		Mapungubwe	Upper Sand		Lower Sand				nzilelele/inwalledi						Lower Luvuvhu/Mutale				Simgwedzi
c	Unit	RRU-Riv11	RRU-Riii3	RRU-Ri8	RRU-Rvi1	RRU-Ri4	RRU-Ri1	RRU-Ri1-1	RRU-Ri3	RRU-Ri5	RRU-Ri14	RRU-Rii3	RRU-Rvi2	Riv32	RRU-Riv16	RRU-Ri20	RRU-Ri22	RRU-Ri25	RRU-Ri26	RRU-Riv33	RRU-Ri27	RRU-Ri28	RRU-Riii6	RRU-Ri30	RRU-Ri32	RRU-Rvii33	RRU-Ri33	RRU-Ri34	RRU-Ri36	RRU-Riv28	RRU-Ri37
Sub- component	Indicator																														
	PES	Х	Χ	Х	Х	Χ	Х	Х	Χ	Х	Х	Х	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ
	Species richness	Х		Х	X		Х			Х	Х	Х		Х		Х		X			Х	Х	Х	X	Χ		Х	Х	Х		х
Riparian Zone	Threatened riparian species										х			X							X	X		X	X			х			
	Endemic riparian species	X					х			х	x					X						X	x	x	X		х				
	FRAI score	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Fish	Overall fish health	Х		Х	Х		Х			Х	Х			Х		Х		Х			Х	Х	Х	Х	Х		Х	Х	Х		Х
FISH	Species diversity	X		Х	Х		Х			Х	Х			Х		Χ		Х			Χ	X	Х	Х	Х		Х	Х	Х		Х
	Key species	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Macroinverte	MIRAI Category and Score	X	х			x	х	х	х	х	х		х		х		х		х	х	х	х	x	x	x	х	х	х		х	
brates	SASS5 Total Score and ASPT	Х	x			X	x	Х	x	Х	Х		X		X		x		X	x	X	X	Х	X	Х	Х	x	Х		X	

	IUA	-	Upper Lepnalala	Lower Lephalala	Kalkpan se Loop			Upper Nyl/Sterk				Mogalarwella		Mapungubwe	Upper Sand		Lower Sand						identification of the second				Lower Luvuvhu/Mutale			<u> </u>	Sningwedzi
	Kesource Unit	RRU-Riv11	RRU-Riii3	RRU-Ri8	RRU-Rvi1	RRU-Ri4	RRU-Ri1	RRU-Ri1-1	RRU-Ri3	RRU-Ri5	RRU-Ri14	RRU-Rii3	RRU-Rvi2	Riv32	RRU-Riv16	RRU-Ri20	RRU-Ri22	RRU-Ri25	RRU-Ri26	RRU-Riv33	RRU-Ri27	RRU-Ri28	RRU-Riii6	RRU-Ri30	RRU-Ri32	RRU-Rvii33	RRU-Ri33	RRU-Ri34	RRU-Ri36	RRU-Riv28	RRU-Ri37
Sub- component	Indicator																														
	Key taxa and abundance	Х		Х	Х		Х			Х	Х			Х		Х		Х			Х	Х	Х	Х	Х		Х	Х	Х		Х
	Taxon dominance	Х		Х	Х		Х			Х	Χ			Х		Х		Х			Х	Х	Χ	Х	Х		Х	Х	Х		х

Table 4-3. Sub-components and indicators proposed for the medium priority river resource units

Table 4-5. Oab-con	iiponents and indicator					CHIC			Officy	TIVE	1 103	Ourc	c un	Ito					Έ						1
	IUA		Upper Lephalala IUA		Kaikpan se Loop IUA		V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Opper Nyi/Sterk 10A			iviogalakwena IUA		Mapungubwe IUA		V = 7	Oppel Sand IOA	Lower Sand IUA		Nzhelele and Nwanedi	IUA			Upper Luvuvhu IUA		Shingwedzi River IUA
	Resource Unit	RRU-Riv8	RRU-Riv13	RRU-Ri38	RRU-Rvi15	RRU-Rvii4	RRU-Rv1	RRU-Riv3	RRU-Riii1	RRU-Ri6	RRU-Ri13	RRU-Rvi4	RRU-Rvi7	RRU-Rvi9	RRU-Ri16	RRU-Ri17	RRU-Ri23	RRU-Riii7	RRU-Rvii34	RRU-Riii9	RRU-Riii10	RRU-Rvii19	RRU-Riii5	RRU-Riv18	RRU-Rvi13
Sub-component	Indicator																								
Water Quantity	Discharge	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Х	Х	Χ	Х	Х	Χ	Χ	Χ	Х	Х	Х	Χ	Х	Х
Dinarian Zana	PES	Х	Χ	Х	Х	Х	Х	Χ	Х	Х	Х	Χ	Х	Х	Χ	Х	Χ	Χ	Χ	Х	Х	Χ	Χ	Х	Х
Riparian zone	Species richness	Χ	Χ	Х	Х	Х	Χ	Χ	Χ	Х	Х	Х	Х	Х	Χ	Х	Χ	Χ	Χ	Х	Х	Х	Χ	Х	Х
Fish	FRAI	Х	Χ	Х	Х	Х	Х	Χ	Х	Х	Х	Χ	Х	Х	Χ	Х	Χ	Χ	Χ	Х	Х	Χ	Χ	Х	Х
Macroinvertebrates	MIRAI Category and Score	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Macionivertebrates	SASS5 Total Score and ASPT	х	Х	х	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	х	Х	Х	Х	х

4.2 Dam sub-component prioritisation and indicator selection

In determining the choice of components, sub-components and indicators for determining dam RQOs, consideration was given to the purpose of the dam, current and future pressures on the dam, importance of the dam to downstream use and for recreational activities.

A generic list which forms the basis for customising components for specific priority Dam RUs is provided in Table 4-4.

Table 4-4. Generic components, subcomponents and indicators for dams

Component	Subcomponent	Reason for selection	Indicator
Quantity	Dam releases	Dam storage levels determine the water allocations that can be supplied to each user sector with EWR a priority user	Percentage storage level based on decisions made at the start of the hydrological year as part of the annual operating analysis
	Nutrients	The system must be maintained at concentrations where they do not impact negatively on the ecosystem, on agriculture and are acceptable for municipal treatments	Total Phosphates (mg/l) Chlorophyll a (μg/l)
Quality	Salts	Salt levels must be maintained at concentrations where they do not impact negatively on the ecosystem, on agriculture and are acceptable for municipal treatments	Electrical Conductivity (EC) (mS/m) Total dissolved salts (TDS) (mg/l)
	Pathogens	The system must be maintained in a state that is safe for contact recreation	Escherichia coli, Faecal coliforms
Biota	Fish	Fish abundance must be maintained at a level that fulfils ecosystem services roles of recreational angling and subsistence harvesting.	Maintain a stable catch per unit effort relative to previous surveys undertaken under similar seasons and conditions.
		Fish health to be maintained in a state that allows for consumption and recreational angling.	Overall health of individuals Parasite burden and bacterial infections impacting <1% of the fish population
Aquatic alien	Nutrients	There is a direct link of aquatic alien vegetation abundance and vigour to nutrients with the water column	Total Phosphates (mg/l) Chlorophyll a (μg/l)
vegetation	Extent of alien vegetation	Invasive aquatic alien plant species hace the potential to cover dams, causing fish kills and potentially unhealthy conditions for humans	% aerial cover of alien vegetation (% of dam surface area)

4.2.1 Selected user sub-components and indicators for dams

In terms of the quantity component of the RQOs for dams, each priority dam should have an operating rule such as provided in Table 4-5 which ensures the allocation of water to users, including the water to meet downstream ecological water requirements.

The sub-components and indicators for the water quantity, water quality and biotic component as shown in Table 4-6 will be selected for all priority dams.

Table 4-5. Example of an operating rule for dams

rable 4-5	5. Example of an operating rule for dams				
Objective	Task ID	Task	Description of Task	Unit of Measure	Data Source
S>.	1		Establish the starting storage of the dam level	% of storage capacity	Use of SAWS data and SARCOF for weather outlook prediction & application
meet Base Flov	2	Characteristic Curve of	(STCCs) -		Water Resource Yield Model
neet the releases to	3	User priority classification of the dam incl. EWR releases	Review and Update the User categories for each system to include the EWR & International Obligations		Annual Operating Analysis
Maintain the Dam storage capacity to meet the releases to meet Base Flows	4	Curtailment Curve	Apply the STCCs to the starting storage to determine the water allocations that can be supplied to each user sector with EWR a priority user	supplied for the	Hydrological Drought Analysis Model (HDAM)
	5	Stakeholder Participations	Operating Forum (SOF)	Avoid dam storage level going down below the percentage to carry over to the next hydrological cycle. Review on 1 Novprojected runoff	N/A

Table 4-6. Components, sub-components and indicators proposed for each of the high priority dams.

Dam Name	Component	Sub-component	Indicator/ Measure
	Quantity	Monthly Flow releases	Maintainance low flows Maintainance high flows
		Nutrients	Total Phosphates (mg/l) Chlorophyll a (µg/l)
All prioroity dams	Quality	Salts	Electrical Conductivity (EC) (mS/m) Total dissolved salts (TDS) (mg/l)
		Pathogens	Escherichia coli, Faecal coliforms
		Fish	Maintenance of fish species diversity
₹			Fish health
	Biota		Fish abundance
		Alien aquatic plant species	Water Quality (Nutrients)
			Aerial extent

4.3 Wetland sub-component prioritisation and indicator selection

Step 4 of the procedure for determining wetland RQOs has two key objectives. Firstly, to build an understanding of impacts, and the current and future pressures on priority wetland resources. During this process it is important to consider the impacts of land-based activities on priority wetland resources. Secondly identify sub-components that may be important to either users or the environment and select those sub-components and associated indicators for which RQOs, and where possible numerical criteria, should be developed. Volume 1 of the wetland report (DWS, 2024) outlines the detail of impacts for each high priority wetland, including land use and PES score and category and these underpin the choice of components, sub-components and indicators. Table 4-7 indicates a generic list of components, sub-components and indicators that are generally important to most wetlands. This generic list forms the basis for customising components for each specific high priority wetland, since not all may be relevant to each wetland / wetland complex.

Table 4-7. Generic list of components, sub-components and indicators that are generally important to most wetlands.

SQs	Component	Subcomponent	Indicator
Wetland r	name, HGM typ	ing and extent (Ha)	
	Water	Water Inputs Water distribution and retention patterns	Hydrology (EWR)
			Stream permanency
			Seasonality
	quantity		Depth to ground water (springs / floodplains)
			Flooding by damming within the wetland
			Lake / Pan water level regime

SQs	Component	Subcomponent	Indicator
			Extent of natural grassland within the wetland complex (land cover classes 12-13; SANLC, 2020)
		Wetland vegetation structure / composition	Extent of natural wooded land within the wetland complex (land cover classes 1-4; SANLC, 2020)
			Extent of herbaceous wetlands (land cover classes 22-23; SANLC, 2020)
			Extent of alien invasive plants within the wetland / complex
	Habitat		Extent of planted forest within the wetland complex (land cover classes 5-7; SANLC, 2020)
		Habitat fragmentation within	Land cover classes denoted to mines and quarries within the wetland complex (classes 68-72; SANLC, 2020)
		the wetland delineation	Land cover classes denoted to cultivated areas within the wetland complex (classes 32-46 & 73; SANLC, 2020)
			Land cover classes denoted to built-up areas and infrastructure within the wetland complex (classes 47-67; SANLC, 2020)
			Erosion / incision
		Waterbirds	Wetland is within 500m of a threatened waterbird point locality.
			Wetland / floodplain birds (species diversity / abundance)
			Mammal species diversity (wetland-dependent)
		Mammals	Hippo abundance (VU)
	Biota	Dontilos	Crocodile abundance
		Reptiles	Reptile species diversity (wetland-dependent)
		Fish	Species diversity in the wetland (may be only during flooding)
		Amphibians	Frogs and toads (species diversity)
		Wetland plants	Endangered / unique species diversity
		Taxon richness	Number of wetland-dependent species
	Water	Sediments	Sediment deposition / scour balance
	quality	Water chemistry	Water quality (effluent) to comply with effluent standards.

4.3.1 Selected user sub-components and indicators for wetlands

Components, sub-components and indicators were selected to represent each of the high priority wetlands (summary shown in Table 4-8). These are in line with those components and sub-components suggested by Bredin *et al.*, 2019, and represent drivers of internal structure and function of wetlands, are listed in Table 4-9, and will be used to derive narrative and where possible numeric RQOs for each wetland / wetland complex.

Table 4-8. Summary of infield verification of high priority wetlands.

Table 4-8. Sumi	Table 4-8. Summary of infield verification of high priority wetlands.				How to			
High Priority Wetland	PES Score	PES Category	E	ES	REC	Reason for REC	TEC	How to achieve the TEC
Luvuvhu Floodplain (Makuleke)	80	B/C	Very High	High	В	Very High EI supports half category increase	В	Reduce AIP; manage elephant impact
Nyl River Floodplain	65	С	Very High	High	B/C	Very High EI supports half category increase	B/C	Reduce AIP & artificial water storage; manage grazing & trampling pressure
Wonderkrater	80	B/C	Very High	Moderate	В	Very High EI supports half category increase	В	Reduce AIP; manage grazing & trampling pressure
Nyl Pans	57	D	High	High	C/D	High EI supports half category increase	C/D	Improve water quality
Maloutswa Floodplain	66	С	Very High	High	B/C	Very High EI supports half category increase	С	Maintain PES
Kolope Wetlands	90	A/B	Very High	Low	A/B	Maintain PES as already near natural	A/B	Maintain PES
Lake Fundudzi	78	B/C	Very High	High	В	Very High EI supports half category increase	В	Reduce AIP
Mutale Wetlands	62	C/D	Very High	High	O	Very High EI supports half category increase	С	Reduce AIP & sand mining
Mokamole (tributary of the Mogalakwena)	80	B/C	High	High	В	High EI supports half category increase	B/C	Maintain PES
Malahlapanga	78	B/C	Very High	Moderate	В	Very High EI supports half category increase	B/C	Maintain PES
Bububu wetlands (tributary of the Shingwedzi)	97	Α	Very High	Moderate	Α	Maintain PES as already natural	Α	Maintain PES

Table 4-9. Components, sub-components and indicators proposed for each of the high priority wetlands

SQs	Component	Subcomponent	Indicator			
Luvuvhu l	Luvuvhu Floodplain (Makuleke) - river & floodplain complex with pans (3648 Ha)					
		Matanlamita	Hydrology (EWR)			
	Water quantity	Water Inputs	Depth to ground water on the floodplain			
	quarity		Flooding by damming with the wetland			

SQs	Component	Subcomponent	Indicator
		Water distribution and retention patterns	Pan water level regime
		Wetland vegetation structure	Extent of natural wooded land within the wetland complex (land cover classes 1-4, 2020)
		/ composition	Extent of herbaceous wetlands (land cover classes 22-23, 2020)
			Extent of alien invasive plants within the wetland / complex
	Habitat	Habitat fragmentation with the wetland delineation	Aerial extent of developments within the wetland complex (includes mines and quarries, SANLC classes 68-72, built-up areas, infrastructure, canals, furrows and trenching, SANLC classes 47-67)
			Land cover classes denoted to cultivated areas within the wetland complex (classes 32-46 & 73, 2020)
		Waterbird species	Migratory species diversity dependent on wetland complex
		waterbird species	Wetland / floodplain birds (species diversity / abundance)
			Mammal species diversity (wetland-dependent)
		Mammals	Elephant abundance
			Hippo abundance (VU)
	Biota	Reptiles	Crocodile abundance
			Reptile species diversity (wetland-dependent)
		Fish	Species diversity in the Luvuvhu River and perennial pans
		Amphibians	Frogs and toads (species diversity)
		Wetland plants	Endangered / unique species diversity
		Taxon richness	Number of wetland-dependent species
	Water	Sediments	Sediment deposition / scour balance
	quality	Water chemistry	Water quality (effluent) to comply with effluent standards.
Nyl River	floodplain (193	78 Ha)	
			Hydrology (EWR)
	Water	Water Inputs	Stream permanency
	Water quantity		Seasonality
	quantity	Water distribution and retention patterns	Flooding by damming within the wetland
			Extent of natural grassland within the wetland complex (land cover classes 12-13; SANLC, 2020)
		Wetland vegetation structure / composition bitat Habitat fragmentation within the wetland delineation	Extent of natural wooded land within the wetland complex (land cover classes 1-4; SANLC, 2020)
	Habitat		Extent of herbaceous wetlands (land cover classes 22-23; SANLC, 2020)
			Extent of alien invasive plants within the wetland / complex
			Extent of planted forest within the wetland complex (land cover classes 5-7; SANLC, 2020)

SQs	Component	Subcomponent	Indicator
			Aerial extent of developments within the wetland complex (includes mines and quarries, SANLC classes 68-72, built-up areas, infrastructure, canals, furrows and trenching, SANLC classes 47-67)
			Land cover classes denoted to cultivated areas within the wetland complex (classes 32-46 & 73; SANLC, 2020)
		Waterbirds	Wetland is within 500m of a threatened waterbird point locality.
		waterbilds	Wetland / floodplain birds (species diversity / abundance)
		Mammals	Mammal species diversity (wetland-dependent)
	Biota	Reptiles	Reptile species diversity (wetland-dependent)
		Fish	Species diversity in the wetland (may be only during flooding)
		Amphibians	Frogs and toads (species diversity)
		Wetland plants	Endangered / unique species diversity
		Taxon richness	Number of wetland-dependent species
	Matan	Sediments	Sediment deposition / scour balance
	Water quality	Water chemistry	Water quality (effluent) to comply with effluent standards.
Wonderkr	ater depressio	nal wetland (655ha)	
	Water quantity	Water Inputs	Depth to ground water (Spring)
			Extent of natural grassland within the wetland complex (land cover classes 12-13; SANLC, 2020)
		Wetland vegetation structure / composition	Extent of natural wooded land within the wetland complex (land cover classes 1-4; SANLC, 2020)
			Extent of herbaceous wetlands (land cover classes 22-23; SANLC, 2020)
			Extent of alien invasive plants within the wetland / complex
	Habitat		Extent of planted forest within the wetland complex (land cover classes 5-7; SANLC, 2020)
		Habitat fragmentation within the wetland delineation	Aerial extent of developments within the wetland complex (includes mines and quarries, SANLC classes 68-72, built-up areas, infrastructure, canals, furrows and trenching, SANLC classes 47-67)
			Land cover classes denoted to cultivated areas within the wetland complex (classes 32-46 & 73; SANLC, 2020)
			Erosion / incision
		Wetland plants	Endangered / unique species diversity
	Biota	Taxon richness	Number of wetland-dependent species
Nyl Pans	(valley bottom)	with a channel with depressio	
,	Water	-	Hydrology (EWR)
	quantity	Water Inputs	Stream permanency
	<u> </u>		k

SQs	Component	Subcomponent	Indicator
			Seasonality
			Extent of natural grassland within the wetland complex (land cover classes 12-13; SANLC, 2020)
		Wetland vegetation structure / composition	Extent of natural wooded land within the wetland complex (land cover classes 1-4; SANLC, 2020)
			Extent of herbaceous wetlands (land cover classes 22-23; SANLC, 2020)
			Extent of alien invasive plants within the wetland / complex
	Habitat		Extent of planted forest within the wetland complex (land cover classes 5-7; SANLC, 2020)
		Habitat fragmentation within the wetland delineation	Aerial extent of developments within the wetland complex (includes mines and quarries, SANLC classes 68-72, built-up areas, infrastructure, canals, furrows and trenching, SANLC classes 47-67)
			Land cover classes denoted to cultivated areas within the wetland complex (classes 32-46 & 73; SANLC, 2020)
		Lake area	Extent of natural open water (wet & dry season)
		Waterbird species	Wetland / floodplain birds (species diversity)
	Biota	Wetland plants	Endangered / unique species diversity
		Taxon richness	Number of wetland-dependent species
	Water Quality	Water chemistry	Water quality (effluent) to comply with effluent standards.
Maloutsw	a Floodplain (3	888 Ha)	
			Hydrology (EWR)
	Water	Water Inputs	Stream permanency
	quantity		Seasonality
		Water distribution and retention patterns	Flooding by damming within the wetland
			Extent of natural grassland within the wetland complex (land cover classes 12-13; SANLC, 2020)
		Wetland vegetation structure / composition	Extent of natural wooded land within the wetland complex (land cover classes 1-4; SANLC, 2020)
			Extent of herbaceous wetlands (land cover classes 22-23; SANLC, 2020)
			Extent of alien invasive plants within the wetland / complex
	Habitat		Extent of planted forest within the wetland complex (land cover classes 5-7; SANLC, 2020)
		Habitat fragmentation within the wetland delineation	Aerial extent of developments within the wetland complex (includes mines and quarries, SANLC classes 68-72, built-up areas, infrastructure, canals, furrows and trenching, SANLC classes 47-67)
		Land cover classes denoted to cultivated areas within the wetland complex (classes 32-46 & 73; SANLC, 2020)	

SQs	Component	Subcomponent	Indicator
			Erosion / incision
		Waterbirds	Wetland / floodplain birds (species diversity)
	Biota	Mammals	Mammal species diversity (wetland-dependent)
	Diota	Wetland plants	Endangered / unique species diversity
		Taxon richness	Number of wetland-dependent species
	Water	Sediments	Sediment deposition / scour balance
	quality	Water chemistry	Water quality (effluent) to comply with effluent standards.
Kolope W	etlands (Riveri	ne; 27511 Ha)	
	Water	Water Inputs	Hydrology (EWR)
	quantity	Water distribution and retention patterns	Flooding by damming within the wetland
			Extent of natural grassland within the wetland complex (land cover classes 12-13; SANLC, 2020)
		Wetland vegetation structure / composition	Extent of natural wooded land within the wetland complex (land cover classes 1-4; SANLC, 2020)
			Extent of herbaceous wetlands (land cover classes 22-23; SANLC, 2020)
			Extent of alien invasive plants within the wetland / complex
	Habitat	Habitat fragmentation within the wetland delineation	Extent of planted forest within the wetland complex (land cover classes 5-7; SANLC, 2020)
			Aerial extent of developments within the wetland complex (includes mines and quarries, SANLC classes 68-72, built-up areas, infrastructure, canals, furrows and trenching, SANLC classes 47-67)
			Land cover classes denoted to cultivated areas within the wetland complex (classes 32-46 & 73; SANLC, 2020)
	Biota	Taxon richness	Number of wetland-dependent species
Lake Fun	dudzi (depress	ional; 517 Ha)	
	Water	Water Inputs	Hydrology (EWR)
	quantity	Water distribution and retention patterns	Lake water level regime
			Extent of natural grassland within the wetland complex (land cover classes 12-13; SANLC, 2020)
		Wetland vegetation structure / composition	Extent of natural wooded land within the wetland complex (land cover classes 1-4; SANLC, 2020)
	Habitat		Extent of herbaceous wetlands (land cover classes 22-23; SANLC, 2020)
			Extent of alien invasive plants within the wetland / complex
		1161-24-6	Extent of planted forest within the wetland complex (land cover classes 5-7; SANLC, 2020)
		Habitat fragmentation within the wetland delineation	Aerial extent of developments within the wetland complex (includes mines and quarries, SANLC classes 68-72, built-up areas, infrastructure, canals, furrows and trenching, SANLC classes 47-67)

SQs	Component	Subcomponent	Indicator
			Land cover classes denoted to cultivated areas within the wetland complex (classes 32-46 & 73; SANLC, 2020)
		Lake area	Extent of natural open water (wet & dry season)
	Biota	Taxon richness	Number of wetland-dependent species
	Water	Sediments	Sediment deposition / scour balance
	quality	Water chemistry	Water quality (effluent) to comply with effluent standards.
Mutale W	etlands (Valley	bottom with and without char	nnel; 3513 Ha)
	Water	Water Inputs	Hydrology (EWR)
	quantity	Water distribution and retention patterns	Flooding by damming within the wetland
			Extent of natural grassland within the wetland complex (land cover classes 12-13; SANLC, 2020)
		Wetland vegetation structure / composition	Extent of natural wooded land within the wetland complex (land cover classes 1-4; SANLC, 2020)
			Extent of herbaceous wetlands (land cover classes 22-23; SANLC, 2020)
			Extent of alien invasive plants within the wetland / complex
	Habitat		Extent of planted forest within the wetland complex (land cover classes 5-7; SANLC, 2020)
		Habitat fragmentation within the wetland delineation	Aerial extent of developments within the wetland complex (includes mines and quarries, SANLC classes 68-72, built-up areas, infrastructure, canals, furrows and trenching, SANLC classes 47-67)
			Land cover classes denoted to cultivated areas within the wetland complex (classes 32-46 & 73; SANLC, 2020)
			Extent of sand mining
	Biota	Taxon richness	Number of wetland-dependent species
	Water quality	Water chemistry	Water quality (effluent) to comply with effluent standards.
Mokamol	e (tributary of t	he Mogalakwena; Valley botto	m with a channel; 464 Ha)
	Motor	Water Inputs	Hydrology (EWR)
	Water quantity	Water distribution and retention patterns	Flooding by damming within the wetland
			Extent of natural grassland within the wetland complex (land cover classes 12-13; SANLC, 2020)
		Wetland vegetation structure / composition	Extent of natural wooded land within the wetland complex (land cover classes 1-4; SANLC, 2020)
	Llabitet		Extent of herbaceous wetlands (land cover classes 22-23; SANLC, 2020)
	Habitat		Extent of alien invasive plants within the wetland / complex
		Habitat fragmentation within the wetland delineation	Extent of planted forest within the wetland complex (land cover classes 5-7; SANLC, 2020)
			Aerial extent of developments within the wetland complex (includes mines and quarries, SANLC

SQs	Component	Subcomponent	Indicator
			classes 68-72, built-up areas, infrastructure, canals, furrows and trenching, SANLC classes 47-67)
			Land cover classes denoted to cultivated areas within the wetland complex (classes 32-46 & 73; SANLC, 2020)
	Biota	Taxon richness	Number of wetland-dependent species
Peat dome	es in KNP - Ma	lahlapanga (47 Ha)	
	Water quantity	Water Inputs	Depth to ground water (springs)
			Extent of natural grassland within the wetland complex (land cover classes 12-13; SANLC, 2020)
		Wetland vegetation structure / composition	Extent of natural wooded land within the wetland complex (land cover classes 1-4; SANLC, 2020)
			Extent of herbaceous wetlands (land cover classes 22-23; SANLC, 2020)
	Habitat		Extent of alien invasive plants within the wetland / complex
		Habitat fragmentation within the wetland delineation	Aerial extent of developments within the wetland complex (includes mines and quarries, SANLC classes 68-72, built-up areas, infrastructure, canals, furrows and trenching, SANLC classes 47-67)
			Land cover classes denoted to cultivated areas within the wetland complex (classes 32-46 & 73; SANLC, 2020)
		Mammals	Elephant density
	Biota	Manimais	Buffalo density
		Taxon richness	Number of wetland-dependent species
Bububu w	etlands (tribut	ary of the Shingwedzi); Riveri	ne with sodic; 6533 Ha)
	Water quantity	Water Inputs	Hydrology (EWR)
			Extent of natural grassland within the wetland complex (land cover classes 12-13; SANLC, 2020)
		Wetland vegetation structure / composition	Extent of natural wooded land within the wetland complex (land cover classes 1-4; SANLC, 2020)
			Extent of herbaceous wetlands (land cover classes 22-23; SANLC, 2020)
	Habitat		Extent of alien invasive plants within the wetland / complex
		Habitat fragmentation within the wetland delineation	Aerial extent of developments within the wetland complex (includes mines and quarries, SANLC classes 68-72, built-up areas, infrastructure, canals, furrows and trenching, SANLC classes 47-67)
			Land cover classes denoted to cultivated areas within the wetland complex (classes 32-46 & 73; SANLC, 2020)
	Water quality	Sediments	Sediment deposition / scour balance

4.4 Groundwater sub-component prioritisation and indicator selection

The generic components, sub-components and indicators for groundwater are listed in Table 4-10. The selection of sub-components and indicators for each priority groundwater resource are listed in Table 4-11. For each indicator, a RQO description will be developed, along with a numerical value where possible (i.e. for those that are numeric).

Table 4-10. Selected user sub-components and indicators for groundwater.

Component	Sub-Component (Key)	Rationale for sub-component choice	Indicator Selection
	Abstraction (available yield)	Whilst exploiting groundwater storage is acceptable for managing drought, and could be acceptable for short periods (e.g., high demand periods), over the long-term, groundwater use should be sustainable for all users and the environment. The RQO essentially implies that groundwater mining is considered unacceptable in the long-term. Implementation of this RQO requires the authority to isolate the cause of groundwater level decline and identify over-abstraction (unacceptable) from transition to new dynamic equilibrium (unavoidable), drought and climate change (unavoidable).	Groundwater Levels: (Seasonal abstraction) water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles. (Permanent abstraction) water level decline stabilises under consideration of aquifer response time.
Quantity	Discharge	Groundwater use should be sustainable for all users and the environment. In areas where groundwater and surface water are hydraulically connected, it is assumed that the reversal of the natural gradient with surface water could have unacceptable impacts. Where groundwater discharges to surface water, groundwater abstraction close to surface water (distance dependent on aquifer diffusivity), or groundwater abstraction rates that reduce aquifer water levels beneath that of the river, would reverse the gradient towards the river, and surface water would be 'lost' to groundwater (indirect recharge).	Groundwater Levels: Relative water levels between groundwater and surface water (in mamsl) (i.e., losing or gaining streams)
	Low flow in river	It is assumed that (a portion of) the low flow is derived from groundwater. Whilst all abstraction reduces natural discharge to some extent and at some point, in time, it would be unacceptable for abstraction to cause groundwater discharge to reduce below the maintenance low flow value, at locations that have been identified as having higher dependence on groundwater.	Gauging Flows: Compliance with the low flow requirements in the river
Quality	Nutrients, Salts	Groundwater management measures must ensure groundwater quality is protected. The parameters selected will support identification of a variety of pollution sources (captured in increase in salts) (e.g., mining), agricultural pollution (fertilisers) and industrial, domestic and animal sewage. The numerical values represent the 95 percentiles for the listed aquifer within the Groundwater Resource Unit. This is taken as a limit of acceptable deviation from natural background. Where insufficient data exists to establish robust statistics for an aquifer within an area, numerical values are either taken from the same aquifer in neighbouring areas or from data for the same	Groundwater Quality: NO₃ (as N) and Ecological Category
	Pathogens	Groundwater management measures must ensure groundwater quality is protected. The parameters selected will support identification of pollution from wastewater (pathogens) and other bacteriological sources. The numerical value is based on drinking water quality standards.	Groundwater Quality: E-coli, Total Coliform

Table 4-11. Sub-component and indicator selection for prioritised quaternary catchments.

Description	GRU	Quat	Description (of prioritised resource units)		Quantity		Qu	ality
Middle Lephalala	A50-2	A50G	Low to Moderate groundwater use to support rural water supply and groundwater schemes.	Abstraction (Available Yield)			Salts, Nutrients	
Lower Lephalala	A50-3	A50H	Moderate groundwater use to support economic activities (agriculture), rural water supply and groundwater schemes.	Abstraction (Available Yield)			Salts, Nutrients	
Kalkpan	A50-4	A63C	Low to Moderate groundwater use to rural water supply. GW could play a role in supporting spring seepages.	Abstraction (Available Yield)	Discharge	Low flow in river		
		A61A	High groundwater use to support groundwater schemes and Modimolle wellfield. GW play a moderate role in supporting baseflow.	Abstraction (Available Yield)	Discharge			
		A61B	Low to Moderate groundwater use to support rural water supply. GW plays a moderate role in supporting baseflow (and wetlands).	Abstraction (Available Yield)	Discharge	Low flow in river		
Nyl River Valley	A61-1	A61C	Low to Moderate groundwater use to support rural water supply. GW plays a moderate role in supporting baseflow (and Nylsvley).	Abstraction (Available Yield)	Discharge			
		A61D	Low to Moderate groundwater use to support groundwater schemes and Mookgophong wellfield. GW plays a moderate role in supporting baseflow (and wetlands).	Abstraction (Available Yield)	Discharge		Salts, Nutrients	Pathogens
		A61E	Moderate groundwater use to support groundwater schemes/wellfields and rural water supply. GW plays a moderate role in supporting baseflow (and wetlands).	Abstraction (Available Yield)	Discharge		Salts, Nutrients	Pathogens
Sterk	A61-2	A61H	Low to Moderate groundwater use to support groundwater schemes/wellfields and rural water supply. GW could play a moderate role in supporting baseflow (and wetlands).	Abstraction (Available Yield)	Discharge			
Upper Mogalakwena	A61-3	A61F	Low to Moderate groundwater use to support groundwater schemes/Mokopane wellfields and rural water supply. GW plays a role in supporting baseflow.	Abstraction (Available Yield)	Discharge		Salts, Nutrients	Pathogens

August 2025

Description	GRU	Quat	Description (of prioritised resource units)		Quantity	Qua	ality
		A61G	Moderate groundwater use to support groundwater schemes, Mogalakwena Mine wellfields and rural water supply. GW plays a moderate role in supporting baseflow.	Abstraction (Available Yield)	Discharge	Salts, Nutrients	
Matiala	A62-2	A62E	Low to Moderate groundwater use to support economic activities (agriculture) and rural water supply. GW could play a role in supporting baseflow (and wetlands).	Abstraction (Available Yield)	Discharge		
Lower	A63-1	A63A	High groundwater use to support economic activities (agriculture).	Abstraction (Available Yield)		Salts, Nutrients	
Mogalakwena	A03-1	A63D	Moderate groundwater use to support economic activities (agriculture) (Alldays) and groundwater schemes and rural water supply.	Abstraction (Available Yield)		Salts, Nutrients	
Limpopo	A63/71-3	A63E	High groundwater use to support economic activities (agriculture). Hosts Mapungubwe and Venetia Mine. GW could play a role in supporting wetlands.	Abstraction (Available Yield)	Discharge	Salts, Nutrients	
Tributaries	A03// 1-3	A71L	High groundwater use to support economic activities (mining). Schroda/Greefswald Wellfields. Hosts Mapungubwe.	Abstraction (Available Yield)	Discharge	Salts, Nutrients	
Upper Sand	A71-1	A71A	High groundwater use to support economic activities. Hosts Polokwane (i.e., Sand River) wellfields.	Abstraction (Available Yield)	Discharge	Salts, Nutrients	
opper Sanu	A7 1-1	A71B	High groundwater use to support economic activities (Several wellfields, groundwater schemes and rural water supply).	Abstraction (Available Yield)	Discharge	Salts, Nutrients	Pathogens
		A71C	High groundwater use to support economic activities (agriculture), rural water supply and groundwater schemes.	Abstraction (Available Yield)	Discharge	Salts, Nutrients	
Middle Sand	A71-2	A71D	High groundwater use to support groundwater schemes and rural water supply.	Abstraction (Available Yield)	Discharge		
		A71H	Moderate groundwater use to support groundwater schemes (Makhado).	Abstraction (Available Yield)		Salts, Nutrients	

Description	GRU	Quat	Description (of prioritised resource units)		Quantity		Qu	ality
		A71E	High groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting wetlands.	Abstraction (Available Yield)	Discharge		Salts, Nutrients	
Hout	A71-3	A71F	High groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting wetlands.	Abstraction (Available Yield)	Discharge		Salts, Nutrients	
Hout	A71-3	A71G	High groundwater use to support economic activities (agriculture), groundwater schemes and rural water supply.	Abstraction (Available Yield)			Salts, Nutrients	
		A72A	High groundwater use to support economic activities (agriculture), groundwater schemes and rural water supply.	Abstraction (Available Yield)	Discharge		Salts, Nutrients	
	A71-4	A71J	High groundwater use to support economic activities (agriculture) and rural water supply. GW could play a role in supporting wetlands.	Abstraction (Available Yield)			Salts, Nutrients	
Sandbrak		A72B	Moderate groundwater use to support economic activities (agriculture), groundwater schemes and rural water supply.	Abstraction (Available Yield)				
	A71-5	A71K	High groundwater use to support groundwater schemes, rural water supply and Musina (i.e., Limpopo River) wellfield.	Abstraction (Available Yield)	Discharge		Salts, Nutrients	Pathogens
Haner Nahalala	A80-1	A80A	Low to moderate groundwater use to support groundwater schemes and rural water supply. GW plays a role in supporting wetlands and spring seepages.	Abstraction (Available Yield)	Discharge			
Upper Nzhelele	A0U-1	A80F	Moderate groundwater use to support economic activities (agriculture) and rural water supply. GW could play a role in supporting wetlands. Potential coal mining development.	Abstraction (Available Yield)			Salts, Nutrients	
Lower Nzhelele	A80-2	A80G	Moderate groundwater use to support economic activities (agriculture) and rural water supply. GW could play a role in supporting baseflow and spring seepages.	Abstraction (Available Yield)	Discharge	Low flow in river		

Description	GRU	Quat	Description (of prioritised resource units)		Quantity		Qu	ality
	A80-3	A80J	Moderate groundwater use to support economic activities (agriculture), groundwater schemes and rural water supply. GW could play a role in supporting wetlands.	Abstraction (Available Yield)	Discharge	Low flow in river		
		A91A	High groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting baseflow.	Abstraction (Available Yield)	Discharge			
		A91B	Moderate groundwater use to support economic activities (agriculture), groundwater schemes and rural water supply. GW could play a role in supporting baseflow.	Abstraction (Available Yield)	Discharge		Salts, Nutrients	
Upper Luvuvhu	A91-1	A91C	High groundwater use to support economic activities (agriculture), groundwater schemes and rural water supply. GW could play a role in supporting baseflow.	Abstraction (Available Yield)	Discharge		Salts, Nutrients	
		A91E	Low groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting baseflow.	Abstraction (Available Yield)	Discharge		Salts, Nutrients	
		A91F	Low groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting baseflow.	Abstraction (Available Yield)	Discharge		Salts, Nutrients	
		A91G	Low groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting baseflow and wetlands.	Abstraction (Available Yield)	Discharge	Low flow in river	Salts, Nutrients	
		A91H	Low groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting baseflow.	Abstraction (Available Yield)	Discharge	Low flow in river		
Mutale/Luvuvhu	A91-2	A92B	Low to Moderate groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting baseflow and wetlands.	Abstraction (Available Yield)	Discharge	Low flow in river		
		A92C	Low to Moderate groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting baseflow and spring seepages.	Abstraction (Available Yield)	Discharge			

EVALUATION OF RESOURCE UNIT REPORT - FINAL

Description	GRU	Quat	Description (of prioritised resource units)		Quantity		Qu	ality
		A92D	Low to Moderate groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting baseflow and wetlands.	Abstraction (Available Yield)	Discharge	Low flow in river		
Chinavandui	B00 4	B90B	Low to Moderate groundwater use to support groundwater schemes and rural water supply.	Abstraction (Available Yield)				
Shingwedzi	B90-1	B90F	Low to Moderate groundwater use to support groundwater schemes and rural water supply. GW could play a role in supporting wetlands.	Abstraction (Available Yield)	Discharge			

5 CONCLUSION

The study area comprising secondary catchments A5 to A9 in the Limpopo WMA and secondary catchment B9 in the Olifants WMA have been delineated into 12 IUAs. Resource units were delineated within each IUA for river, dams, wetlands and groundwater resources and were prioritised using the RUPT to identify resource units which would be important to be monitored to ensure the protection of the water resource in accordance with the defined Water Resource Class of each IUA.

Furthermore, the priority resource units were evaluated, using the Resource Unit Evaluation Tool or a modification of the Tool to establish the sub-components and indicators that may be important to either users or the environment and which should be protected to support the resource dependent activities and/or maintain the integrity and ecological functioning of the water resource.

Draft RQOs and Numerical Limits will be developed for the priority sub-components and indicators in the next step of the RQOs process.

6 REFERENCES

Bredin, I.P., Awuah, A., Pringle, C., Quayle, L., Kotze, D.C. and Marneweck, G.C. 2019. A procedure to develop and monitor wetland resource quality objectives. WRC Report No TT 795/19. Water Research Commission, Pretoria.

Department of Water and Sanitation, South Africa. 2024. Determination of Water Resource Classes, Reserve and Resource Quality Objectives Study for Secondary Catchments A5 – A9 within the Limpopo Water Management Area (WMA 1) and Secondary Catchment B9 in the Olifants Water Management Area (WMA 2): Final Scenarios Report. WEM/WMA01&02/00/CON/RDM/0125

Department of Water and Sanitation, South Africa. January 2024. Determination of Water Resource Classes, Reserve and Resource Quality Objectives Study for Secondary Catchments A5 – A9 within the Limpopo Water Management Area (WMA 1) and Secondary Catchment B9 in the Olifants Water Management Area (WMA 2): Wetland Assessment Volume 1 – Ecostatus and Priority Wetlands. Final Draft. Report No.: WEM/WMA01&02/00/CON/RDM/0323a.

Department of Water and Sanitation, South Africa. June 2022. Determination of Water Resource Classes, Reserve and Resource Quality Objectives Study for Secondary Catchments A5 – A9 within the Limpopo Water Management Area (WMA 1) and Secondary Catchment B9 in the Olifants Water Management Area (WMA 2): Delineation and Status Quo Report. Final. Report No.: WEM/WMA01&02/00/CON/RDM/0322

Department of Water and Sanitation (DWS). 2016. Development of Procedures to Operationalise Resource Directed Measures. Wetland tool analysis and standardisation Report. Prepared by: Rivers for Africa eFlows Consulting (Pty) Ltd. Report no RDM/WE/00/CON/ORDM/0616.

Department of Water Affairs (DWA). 2011. Procedures to develop and implement resource quality objectives. Department of Water Affairs, Pretoria, South Africa.

Le Maitre, D., Seyler, H., Holland, M., Smith-Adao, L., Maherry, A., Nel, J. and Witthuser. K. (2019). Strategic Water Source Areas: Vital for South Africa's Water, Food and Energy Security. Report to the Water Research Commission. WRC Report No. SP128/19.

APPENDIX A

August 2025

App	endix A 1. Riv	ver Re	esour	ce Un	it Pric	oritisa	tion F	Part 1																															
	Resource Unit	A71D	A71G	А71Н	A71J	A71K	A72A	A72B	A80A	A80B	A80C	A80D	A80E	A80F	A80G	А80Н	A80J	A91A	A91B	A91C	A91D	A91E	A91F	A91G	А91Н	A91J	A91K	A92A	A92B	A92C	А92D	B90A	B90B	B90C	В90D	B90E	B90F	B90G	В90Н
	Position in IUA	0.25	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.25	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.25	0.25	0.00	0.25	0.00	0.25	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.25
	Concern for users	0.17	0.04	0.08	0.04	0.20	0.07	0.02	0.13	0.13	0.13	0.02	0.04	0.04	0.15	0.06	0.11	0.11	0.11	0.19	0.24	0.08	0.06	0.25	0.15	0.05	0.17	0.15	0.16	0.07	0.23	0.12	0.15	0.15	0.12	0.12	0.15	0.12	0.13
PRIORITIZATION SCORES	Concem for environment	0.14	0.11	0.19	0.13	0.13	0.16	0.11	0.14	0.17	0.21	0.06	0.03	0.11	0.19	0.17	0.20	0.13	0.17	0.17	0.20	0.19	0.13	0.20	0.21	0.10	0.23	0.16	0.16	0.10	0.21	0.06	0.06	0.06	0.00	0.00	0.11	0.08	0.20
PRIORITIZ		0.13	0.04	0.09	0.10	0.13	0.07	0.08	0.06	0.18	0.06	0.03	0.00	0.09	0.13	0.09	0.13	0.04	0.22	0.06	0.24	0.22	0.09	0.13	0.09	0.04	0.10	0.06	0.13	0.04	0.13	0.05	0.06	0.04	0.05	0.05	0.06	0.02	0.07
	Total Prioritization Score	0.69	0.19	0.36	0.27	0.70	0.29	0.21	0.34	0.48	0.40	0.12	0.07	0.24	0.72	0.33	0.68	0.27	0.50	0.43	0.68	0.48	0.28	0.83	0.70	0.18	0.75	0.37	0.69	0.20	0.81	0.23	0.27	0.25	0.17	0.17	0.32	0.21	0.66
	Priority Rating	0.8	0.2	0.4	0.3	0.8	0.4	0.3	0.4	0.6	0.5	0.1	0.1	0.3	0.9	0.4	0.8	0.3	0.6	0.5	0.8	0.6	0.3	1.0	0.8	0.2	0.9	0.4	0.8	0.2	1.0	0.3	0.3	0.3	0.2	0.2	0.4	0.3	0.8

Арр	endix A 2. Riv	ver Re	sour	ce Un	it Pric	oritisa	tion -	- Part	2																														
ı	Resource Unit	A50A	A50B	A50C	А50D	A50E	A50F	A50G	А50Н	A50J	A63C	A61A	A61B	A61C	A61D	A61E	A61F	A61G	А61Н	A61J	A62A	A62B	A62C	A62D	A62E	A62F	A62G	А62Н	A62J	A63A	A63B	A63D	A63E	A71L	A71A	A71B	A71C	A71E	A71F
	Position in IUA	0.00	0.25	0.00	0.00	0.00	0.25	0.00	0.25	0.25	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.25	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.25	0.00	0.25	0.25	0.00	0.00	0.00	0.25	0.25	0.00
	Concern for users	0.12	0.06	0.05	0.05	0.06	0.03	0.05	0.06	0.02	0.12	0.08	0.17	0.19	0.11	0.08	0.13	0.08	0.07	0.10	0.05	0.06	0.04	0.03	0.03	0.02	0.05	0.03	0.05	0.16	0.05	0.13	0.13	0.11	0.13	0.05	0.10	0.11	0.12
PRIORITIZATION SCORES	Concem for environment	0.20	0.16	0.08	0.11	0.17	0.03	0.16	0.17	0.15	0.15	0.16	0.14	0.19	0.16	0.11	0.16	0.18	0.19	0.13	0.11	0.09	0.13	0.13	0.02	0.10	0.16	0.11	0.11	0.16	0.16	0.10	0.20	0.14	0.18	0.18	0.18	0.14	0.18
PRIOF	Management and practical considerations	0.10	0.13	0.05	0.13	0.04	0.04	0.07	0.21	0.07	0.10	0.22	0.25	0.05	0.19	0.20	0.18	0.19	0.20	0.20	0.19	0.09	0.07	0.07	0.19	0.07	0.04	0.19	0.06	0.13	0.16	0.25	0.13	0.09	0.18	0.18	0.04	0.19	0.16
	Total Prioritizatio n Score	0.42	0.59	0.17	0.28	0.27	0.35	0.28	0.69	0.49	0.62	0.45	0.56	0.43	0.46	0.39	0.47	0.70	0.45	0.67	0.35	0.25	0.24	0.22	0.24	0.18	0.24	0.34	0.23	0.70	0.37	0.72	0.71	0.34	0.48	0.40	0.56	0.69	0.45
	Priority Rating	0.6	0.8	0.2	0.4	0.4	0.5	0.4	1.0	0.7	0.9	0.6	0.8	0.6	0.6	0.5	0.6	1.0	0.6	0.9	0.5	0.3	0.3	0.3	0.3	0.3	0.3	0.5	0.3	1.0	0.5	1.0	1.0	0.5	0.7	0.6	0.8	1.0	0.6

APPENDIX B

August 2025

Appendix B 3. River Resource Unit Evaluation

UPPER LEPHAL	ALA RRU-Riv11													
				ntity			Quality			Hal	bitat		Biota	
Selection	of sub-componer determination	nts for RQO	Low Flows (Main tenance Flows)	High Flows (Floods)	Nutrients	Salts	System	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	ction	Importance Rating	VH	н	VL	VL	VL	VL	VL	VH	н	Н	Н	VL
	Sele	Impact Class	M (-)	N/A	H (-)	M (-)	H (-)	N/A	M (-)	M (-)	VH (-)	H (-)	VH (-)	N/A
Selection guidance	EcoSpec Selection	Ecosystem prioritization rating	Very High	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very High	Very High	High	Very High	Very Low
ection	S =	Importance Rating	VH	L	М	VL	L	L	М	VH	VH	М	VH	VL
Sel	UserSpec	Impact Class	M (-)	N/A	H (-)	M (-)	H (-)	N/A	M (-)	M (-)	VH (-)	H (-)	VH (-)	N/A
	Use	User prioritization rating	Moderate	Very Low	Moderate	Very Low	Low	Very Low	Low	Moderate	Very High	Moderate	Very High	Very Low
		Select for RQO Determination	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y
	ionale	Rationale for sub- component choice	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Monitor nutrients and eutrophication potential	Monitor salts with respect to ecosystem impacts	Monitor DO, TSS, Water temp for aquatic ecosystem impacts	Prevent contamiation with toxins	Monitor pathogens for recreational impacts.	Monitor habitat diversity and condition	Monitor riparian habitat diversity and condition	Monitor key fish species	Monitor key aquatic & riparian species and AIP	Monitor condition and key taxa
	<u>ē</u>	EcoSpec	Υ	Υ	Y	Υ	Y	Υ	Υ	У	Y	Y	Y	Y
	SSS	UserSpec	Y		Υ		Υ	Υ	Υ					
	proce	Integrated Measure												
	Documenting selection process & rationale	Indicators Selected for RQO determination	Maintainance low flows	Maintenance high flows	PO4-P and TIN	EC/TDS	DO, Water Temp, TSS/Turbidity	NTMP approach & variables	E coli & Faecal coliforms	IHI, GAI, VEGRAI	VEGRAI, IHI, GAI	FRAI, Key species	VEGRAI, Key species	PES score and category and key taxa
	Ö	Rationale for indicator selection	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Phosphates & nitrogen stimulate primary production and can cause eutrophication	Salts affect the osmoregulation of aquatoic organisms	Aquatic organisms are dependent on healthy	Potential toxicity in the water	Pathogens can cause waterborne diseases	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	FRAI, species diversity and abundance. Presence of alien species, key species	Monitor key riparian species & requirements for persistence	PES score and category and key taxa

LEPHALALA RRU_Ri8

LEPHALALA RRI	J_Ri8													
			Qua	ntity			Quality			Hai	bitat		Biota	
Selection	of sub-componer determination	nts for RQO	Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System variables	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	ction	Importance Rating	L	L	L	L	L	М	VL	L	М	М	L	VL
	Sele	Impact Class	VH (-)	H (-)	H (-)	H (-)	VH (-)	L (-)	H (-)	VH (-)	VH (-)	VH (-)	VH (-)	N/A
Selection guidance	EcoSpec Selection	Ecosystem prioritization rating	Moderate	Low	Low	Low	Moderate	Very Low	Very Low	Moderate	High	High	Moderate	Very Low
action	ט כ	Importance Rating	VH	L	L	М	L	L	L	L	L	L	VL	VL
Selc	Spe	Impact Class	VH (-)	H (-)	H (-)	H (-)	VH (-)	L (-)	H (-)	VH (-)	VH (-)	VH (-)	VH (-)	N/A
	UserSpec Selection	User prioritization rating	Very High	Low	Low	Moderate	Moderate	Very Low	Low	Moderate	Moderate	Moderate	Low	Very Low
		Select for RQO Determination	Y	Υ	Υ	Υ	Y	Y	Y	Y	Y	Y	Y	Υ
	ale	Rationale for sub- component choice	Track flows	Track high flows	Monitor nutrients and eutrophication potential	Monitor salts with respect to ecosystem impacts	Monitor DO, TSS, Water temp for aquatic ecosystem impacts	Prevent contamiation with toxins	Monitor pathogens for recreational impacts.	Monitor instream habitat diversity	Monitor riparian habitat diversity and condition	Monitor key fish species	Monitor key aquatic & riparian species important alien species	Monitor condition and key taxa
	atio	EcoSpec	Y	Υ	Υ	Υ	Υ	Y		Υ	Y	Υ	Υ	Υ
	ž ×	UserSpec	Y		Υ	Υ	Υ	Y	Y			Υ		
	rocess	Integrated Measure	Y											
-	Documenting selection process & rationale	Indicators Selected for RQO determination	Maintainance low flows	Maintenance high flows	PO4-P, TIN	EC/TDS	DO, TSS/turbidity, pH	NTMP approach & variables	E coli, Faecal coliforms	GAI, IHI, VEGRAI	VEGRAI, IHI, GAI	FRAI, Key species	VEGRAI, Key species	PES score and category and key taxa
	B00	Rationale for indicator selection	Monitor low flows	Monitor high flows	Indicator of eutrophication potential	Indicator of dissolved salts	Indicators of dissolved paygen and suspended sediments	Potential toxicity in the water	Indicator of waterborne diseases	Monitor in stream habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	FRAI, species diversity and abundance. Presence of allen species, key species	Monitor key riparian species & requirements for persistence and trajectory of important alien plants species	PES score and category and key taxa

OLIFANTSPRUIT RRU-Ri1

OLIFANTSPRU	SII NNO-NII		Qua	ntity			Quality			Hab	oitat		Biota	
Selection o	of sub-componer determination	nts for RQO	Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System variables	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	ction	Importance Rating	VH	VH	М	L	L	н	М	VH	VH	VH	VH	VL
	Sele	Impact Class	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	L (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	N/A
Selection guidance	EcoSpec Selection	Ecosystem prioritization rating	Very High	Very High	High	Moderate	Moderate	Low	High	Very High	Very High	Very High	Very High	Very Low
lection	% E	Importance Rating	VH	М	L	L	М	VL	М	VH	VH	L	VH	VL
Se	UserSpec	Impact Class	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	L (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	N/A
	Use	User prioritization rating	Very High	High	Moderate	Moderate	High	Very Low	High	Very High	Very High	Moderate	Very High	Very Low
		Select for RQO Determination	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
	u	Rationale for sub- component choice	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Eutrophication potential	Ecosystem protection and irrigation maintenance	Maintenance of physical properties	Prevent contamiation with toxins	Protection of human health	Monitor biophysical diversity and condition	Monitor riparian habitat diversity and condition	Monitor key fish species	Monitor key aquatic & riparian species and AIP	Monitor condition and key taxa
	oua	EcoSpec	Υ	Υ	Υ	Υ	Υ	Υ		у	Υ	Υ	Υ	Υ
3	Ē	UserSpec	Υ		Υ	Υ	Υ	Υ	Υ					
	S S S S S S S S S S S S S S S S S S S	Integrated Measure												
-	Documenting selection process & rauonale	Indicators Selected for RQO determination	Maintainance low flows	Maintenance high flows	PO4-P & TIN	EC/TDS	DO, pH, Water temp, TTSS/Turbidity	NTMP approach & variables	E coli & Faecal coliforms	IHI, VEGRAI, GAI	VEGRAI, IHI, GAI, WetHealth for wetlands	FRAI, Key species	VEGRAI, Key species	PES score and category and key taxa
		Rationale for indicator selection	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Indicators of eutrophication potential	Indicators of dissolved salts	Indicators of physical water quality properties	Potential toxicity in the water	Indicators of pathogen from human sources	Monitor biophysical diversity and condition	Monitor riparian / wetland habitat diversity, condition and processes maintaining it	FRAI, species diversity and abundance. Presence of alien species, key species	Monitor key riparian / wetland species & requirements for persistence	PES score and category and key taxa

MOGALAKWE	NA RRU-Ri5													
				ntity			Quality			Hab	oitat		Biota	
Selection	of sub-componer determination	nts for RQO	Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System variables	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	ction	Importance Rating	VH	Н	М	L	М	н	М	VH	н	VL	Н	VL
_	Sele	Impact Class	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)
Selection guidance	EcoSpec Selection	Ecosystem prioritization rating	Very High	Very High	Moderate	Moderate	Moderate	Very High	High	Very High	High	Low	High	Low
lection	2 =	Importance Rating	VH	М	М	М	М	VH	VH	L	М	М	L	VL
Se	UserSpec	Impact Class	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)
	Use	User prioritization rating	Very High	High	High	High	High	Very High	Very High	Moderate	High	High	Moderate	Low
		Select for RQO Determination	Y	Y	Y	Y	Υ	Y	Y	Υ	Y	Y	Y	Υ
	nale	Rationale for sub- component choice	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Eutrophication potential	Ecosystem	Ecosystem	Ecosystem and human health protection	Human health protection	Important habitat for conservation and users	Monitor riparian habitat diversity and condition	Monitor key fish species	Monitor key aquatic & riparian species and AIP	Monitor condition and key taxa
	atio	EcoSpec	у	у	Υ	Υ	Υ	Υ		у	у	Υ	Υ	Υ
	×	UserSpec	у		Υ	Υ	Υ	Υ	Y					
	proces	Integrated Measure												
	Documenting selection process & rationale	Indicators Selected for RQO determination	Maintainance low flows	Maintenance high flows	PO4-P & TIN	EC/TDS	DO, pH, Water temp, TTSS/Turbidity	NTMP approach & variables	E coli & Faecal coliforms	IHI, VEGRAI, GAI	IHI, VEGRAI, GAI	FRAI, Key species	VEGRAI, Key s pecies	PES score and category and key taxa
	90 0	Rationale for indicator selection	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Indicators of eutrophication potetial	Indicatoprs of dissolved salts	Indicators of physical water quality properties	Potential toxicity in the water	Indicators of pathogen from huamn sources	Monitor habitat diversity and condition	Monitor habitat diversity and condition	FRAI, species diversity and abundance. Presence of alien species, key species	Monitor key riparian species & requirements for persistence	PES score and category and key taxa

MOGALAKWENA Ri14

MOGALAKWENA	11112-7		Qua	ntity			Quality			Hal	bitat		Biota	
Selection o	of sub-componer determination	nts for RQO	Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	ction	Importance Rating	Н	М	М	М	М	L	VL	н	М	VH	М	М
	Sele	Impact Class	H (-)	H (-)	H (-)	M (-)	VH (-)	L (-)	M (+)	VH (-)	H (-)	M (-)	VH (-)	M (-)
Selection guidance	EcoSpec Selection	Ecosystem prioritization rating	High	Moderate	Moderate	Low	High	Very Low	Very Low	Very High	Moderate	High	High	Low
ection	y c	Importance Rating	VH	L	L	М	L	VL	М	L	VH	VH	VH	VL
Sel	Spe ctio	Impact Class	H (-)	H (-)	H (-)	M (-)	VH (-)	L (-)	M (+)	VH (-)	H (-)	M (-)	VH (-)	M (-)
	UserSpec Selection	User prioritization rating	Very High	Low	Low	Low	Moderate	Very Low	Very Low	Moderate	High	Moderate	Very High	Very Low
		Select for RQO Determination	Y	Y	Y	Y	Υ	Υ	Y	Υ	Υ	Υ	Υ	Y
	a.	Rationale for sub- component choice	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Eutrophication potential	Ecosystem protection	Ecosystem protection	Ecosystem and human health protection	Protection of recreational users and rural users	ecosystem prioritisation rating is very high	Monitor riparian habitat diversity and condition	Monitor key fish species	Monitor key aquatic & riparian species	Monitor condition and key taxa
	ie c	EcoSpec	Υ	Υ	Υ	Υ	Υ	Υ		Υ	Υ	Υ	Υ	Υ
1	E E	UserSpec	Υ		Υ	Υ			Y		Υ			
d	S S	Integrated Measure									Υ			
-	Documenting selection process & rationale	Indicators Selected for RQO determination	Maintainance low flows	Maintenance high flows	PO4-P & TIN	EC/TDS	DO, pH, Water temp, TTSS/Turbidity	NTMP approach & variables	E coli & Faecal coliforms	PES score & category (GAI & IHI)	PES score and category (VEG, Geomorph, IHI)	FRAI, Key species	VEGRAI, key species	PES score and category and key taxa
	m	Rationale for indicator selection	For EWR, irrigators	to monitor flood Habitat maintenance flows	Indicators of eutrophication potetial	Indicatoprs of dissolved salts	Indicators of physical water quality properties	Potential toxicity in the water	Indicators of pathogen from huamn sources	Monitor habitat diversity, condition and impacts	If meeting the ecospecs you will meet the userspecs for the rural communities. Same indicators for users and ecospecs	FRAI, species diversity and abundance. Presence of alien species, key species	PES score and category and key species, monitor AIP	PES score and category and key taxa

MOGALAKWENA RRU-Rii3

MOGALAKWENA	RRU-Rii3													
				ntity			Quality			Hal	bitat		Biota	
Selection o	of sub-componer determination	nts for RQO	Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System variables	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	ction	Importance Rating	VH	н	VL	VL	VL	VL	VL	Н	н	М	н	VL
	Sele	Impact Class	VH (-)	L (-)	N/A	N/A	N/A	N/A	N/A	VH (-)	VH (-)	VH (-)	VH (-)	N/A
Selection guidance	EcoSpec Selection	Ecosystem prioritization rating	Very High	Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very High	Very High	High	Very High	Very Low
ection	ac n	Importance Rating	VH	М	VL	VL	VL	VL	VL	L	L	L	VL	VL
Sel	ct Sp	Impact Class	VH (-)	L (-)	N/A	N/A	N/A	N/A	N/A	VH (-)	VH (-)	VH (-)	VH (-)	N/A
	UserSpec Selection	User prioritization rating	Very High	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Moderate	Moderate	Moderate	Low	Very Low
		Select for RQO Determination	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	Υ
	y	Rationale for sub- component choice	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Eutrophication potential	Ecosystem	Ecosystem protection	Ecosystem and human health protection	Protection of recreational users and rural users	Monitor habitat diversity and condition	Monitor riparian habitat diversity and condition	Monitor key fish species	Monitor key aquatic & riparian species, presence of aliens	Monitor condition and key taxa
		EcoSpec	Y	Υ	Υ	Υ	Υ	Υ		Υ	Υ	Υ	Υ	Υ
1	i i	UserSpec	Υ					Υ	Υ					
0	S S	Integrated Measure	Y											
	Documenting selection process & rationale	Indicators Selected for RQO determination	Maintainance low flows	Maintenance high flows	PO4-P & TIN	EC/TDS	DO, pH, Water temp, TTSS/Turbidity	NTMP approach & variables	E coli & Faecal coliforms	GAI, IHI, VEGRAI	GAI, IHI, VEGRAI	FRAI, Key species	VEGRAI, key species	PES score and category and key taxa
	usumpoon	Rationale for indicator selection	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Indicators of eutrophication potetial	Indicatoprs of dissolved salts	Indicators of physical water quality properties	Potential toxicity in the water	Indicators of pathogen from huamn sources	Monitor habitat diversity and condition	If meeting the ecospecs you will meet the userspecs for the rural communities. Same indicators for users and ecospecs	FRAL, species diversity and abundance. Presence of allen species, key species	PES score and category and key species, monitor AIP	PES score and category and key taxa

KALKPAN SE LOOP RRU-Rvi1

KALKFAN 3E	LOOP RRU-Rvi	1	Qua	ntity			Quality			Hal	bitat		Biota	
Selection o	of sub-componer determination	nts for RQO	Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	ction	Importance Rating	VL	VL	L	L	L	VL	VL	VL	М	L	М	VL
	Sele	Impact Class	N/A	N/A	L (-)	N/A	L (-)	N/A	N/A	N/A	N/A	N/A	L (-)	N/A
Selection guidance	EcoSpec Selection	Ecosystem prioritization rating	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low
ection	ں د	Importance Rating	VH	L	VL	М	L	VL	VL	М	М	М	М	VL
Sel	rSpe	Impact Class	N/A	N/A	L (-)	N/A	L (-)	N/A	N/A	N/A	N/A	N/A	L (-)	N/A
	UserSpec Selection	User prioritization rating	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low
		Select for RQO Determination	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
		Rationale for sub- component choice	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Eutrophication potential	Osmoregulation, crop yield reduction, domestic water tastes	Aquatic ecosystem requirements	Ecosystem protection	Ecos ystem and human health protection	Monitor habitat diversity and condition	Monitor riparian habitat diversity and condition	Monitor key fish species	Monitor key aquatic & riparian species	Monitor condition and key taxa
	on alk	EcoSpec	Υ	Υ	Υ	Υ	Υ	Υ	Y	Υ	Υ	Υ		Υ
1	ration and the state of the sta	UserSpec			Υ	Υ			Υ			Y		
•	& SS a	Integrated Measure												
:	Documenting selection process & rationale	Indicators Selected for RQO determination	Maintainance low flows	Maintenance high flows	PO4-P, TIN	EC/TDS	pH, DO, TSS	NTMP approach & variables	E coli & Faecal coliforms	GAI, IHI, VEGRAI	GAI, IHI, VEGRAI	FRAI, Key species	VEGRAI, key species	Key taxa and abundance
	Босит	Rationale for indicator selection	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Eutrophication potential	Osmoregulation, crop yield reduction, domestic water tastes	Aquatic ecosystem requirements	Potential toxicity in the water	Indicators of pathogen from human sources	Monitor habitat diversity and condition	If meeting the ecospecs you will meet the userspecs for the rural communities. Same indicators for users and ecospecs	Monitor fish species abundance and age class diversity	PES score and category and key species, monitor AIP	Monitor key taxa and abundance

KOLOPE RRU-Riv32

KOLOPE RRU	-RIV32		Oua	ntity			Quality			Hal	oitat		Biota	
Selection o	of sub-componer determination	nts for RQO	Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System	Toxics	Pathogens	Instream	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	ction	Importance Rating	VH	М	L	L	L	L	L	VH	VH	Н	н	VL
	Sele	Impact Class	M (+)	M (+)	L (-)	N/A	L (-)	N/A	L (-)	M (+)	N/A	H (+)	M (+)	N/A
Selection guidance	EcoSpec Selection	Ecosystem prioritization rating	Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Low	Low	Very Low	Very Low	Very Low
lection	2 =	Importance Rating	VH	L	L	VL	L	VL	VL	VH	VH	L	VH	VL
Se	UserSpec	Impact Class	M (+)	M (+)	L (-)	N/A	L (-)	N/A	L (-)	M (+)	N/A	H (+)	M (+)	N/A
	Use	User prioritization rating	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low
		Select for RQO Determination	Y	Y	Y	Y	Y	Υ	Y	Y	Y	Y	Y	Υ
	nale	Rationale for sub- component choice	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Eutrophication potential	Ecosystem	Ecosystem	Ecosystem	Ecosystem and human health protection	Important from a conservation and use perspective	Monitor riparian habitat diversity and condition	Monitor key fish species	Monitor key aquatic & riparlan species	Monitor condition and key taxa
	atio	EcoSpec	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
•	_ ⊗ ∽	UserSpec			Υ	Υ	Υ		Υ			Y		
	oroces	Integrated Measure												
:	Documenting selection process & rationale	Indicators Selected for RQO determination	Maintainance Iow flows	Maintenance high flows	PO4-P & TIN	EC/TDS	DO, pH, Water temp, TTSS/Turbidity	NTMP approach & variables	E coli & Faecal coliforms	IHI, GAI	VEGRAI, IHI, GAI	FRAI, Key species	VEGRAI, Key species	Key taxa and abundance
	3000 0	Rationale for indicator selection	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	indicators of eutrophication potetial	Indicators of dissolved salts	Indicators of physical water quality properties	Potential toxicity in the water	Indicators of pathogen from human sources	Monitor habitat diversity, condition and impacts to habitat	Monitor riparian habitat diversity, condition and processes maintaining it	FRAI, species diversity and abundance. Presence of alien species, key species	Monitor key riparian species & requirements for persistence	Monitor key taxa and abundance

SAND RRU-R	120													
				ntity			Quality			Hat	oitat		Biota	
Selection	of sub-componer determination	nts for RQO	Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System variables	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	ection	Importance Rating	L	L	L	L	L	VL	VL	L	М	L	М	L
	Sele	Impact Class	VH (-)	L (-)	VH (-)	VH (-)	VH (-)	L (-)	H (-)	M (-)	M (-)	M (-)	H (-)	M (-)
Selection guidance	EcoSpec Selection	Ecosystem prioritization rating	Moderate	Very Low	Moderate	Moderate	Moderate	Very Low	Very Low	Very Low	Low	Very Low	Moderate	Very Low
lection	2 =	Importance Rating	VH	VL	L	М	М	VL	М	М	L	VL	L	VL
Se	UserSpec	Impact Class	VH (-)	L (-)	VH (-)	VH (-)	VH (-)	L (-)	H (-)	M (-)	M (-)	M (-)	H (-)	M (-)
	Use	User prioritization rating	Very High	Very Low	Moderate	High	High	Very Low	Moderate	Low	Very Low	Very Low	Low	Very Low
		Select for RQO Determination	Y	у	Υ	Υ	Υ	Y	Υ	Y	Y	Y	Y	Υ
		Rationale for sub- component choice	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Eutrophication impacts	Ecosystem & irrigation agriculture impacts	Ecosystem & irrigation agriculture impacts	Prevent contamiation with toxins	Protection of human health	Monitor habitat diversity, condition and disturbance	Monitor habitat diversity, condition and disturbance	Monitor key fish species	Monitor key aquatic & riparian species and AIP	Monitor condition and key taxa
-	nale	EcoSpec	Υ	Υ	Υ	Υ	Υ	Υ		Y	Y	Y	Y	Υ
	atio	UserSpec	Υ	Υ	Υ	Υ	Υ	Υ	Υ					
•	ss s	Integrated Measure												
:	Documenting selection process & rationale	Indicators Selected for RQO determination	Maintainance low flows	Maintenance high flows	PO4-P. TIN	EC/TDS	Water temp, pH, TSS/Turbidity	NTMP approach & variables	E coli, Faecal colifoms	PES Score and category using IHI	PES Score and category using IHI	FRAI, Key species	PES Score and category using IHI, Key species	Key taxa and abundance
	Docume	Rationale for indicator selection	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Nutrients are indicators of eutrophication potetial	EC & TDS are indicators of dissolved soolids	pH affect metal solubility, water temp affect dissolved oxygen conns, TSS affect water clarity and sediment transport.	Potential toxicity in the water	E coll & F coliforms are indicators of pathogens from human sources	Monitor habitat diversity, condition and disturbance	Monitor habitat diversity, condition and disturbance	FRAI, species diversity and abundance. Presence of alien species, key species	Monitor key riparian species & requirements for persistence	Monitor key taxa and abundance

SAND RRU-F	1123		Qua	ntity			Quality			Hab	oitat		Biota	
Selection	of sub-componer determination	nts for RQO	Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System	Toxics	Pathogens	Instream	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	ction	Importance Rating	VH	VH	L	L	L	VL	М	Н	н	М	н	М
	Sele	Impact Class	VH (-)	VH (-)	VH (-)	H (-)	VH (-)	M (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)
Selection guidance	EcoSpec Selection	Ecosystem prioritization rating	Very High	Very High	Moderate	Low	Moderate	Very Low	Moderate	Very High	High	High	High	High
ection		Importance Rating	VH	VH	М	М	L	М	VH	М	VH	L	VH	L
Sele	Spec	Impact Class	VH (-)	VH (-)	VH (-)	H (-)	VH (-)	M (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)
	UserSpec	User prioritization rating	Very High	Very High	High	Moderate	Moderate	Low	Very High	High	Very High	Moderate	Very High	Moderate
		Select for RQO Determination	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
	cess & rationale	Rationale for sub- component choice	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Eutrophication mitigation & future International agreement	Protection of aquatic ecosystems and irrigation fitness for use & future International agreement	Protection of physical properties & future International agreement	Prevention of contamination with toxins co& future international agreement	To understand bacterial WQ changes due to future use	Monitor instream habitat diversity and condition	Monitor riparian habitat diversity and condition	Monitor key fish species	Monitor key aquatic & riparian species and AIP	Based on current seasonality of system and potential flow changes we need to know the potential responses of the macroinvertebrates
	pro	EcoSpec	Y	Υ	Y	Υ	Υ	Υ		Y	Y	Υ	Y	Υ
	tion	UserSpec	Υ	Υ			Υ	Υ	Υ					
	sele	Integrated Measure												
	Documenting selection process & rationale	Indicators Selected for RQO determination	Maintainance low flows	Maintenance high flows	PO4-P & TIN	EC/TDS	DO, pH, Water temp, TTSS/Turbidity	NTMP approach & variables	E coli & Faecal coliforms	GAI, IHI, VEGRAI	VEGRAI, IHI, GAI	FRAI, Key species	VEGRAI, Key species	MIRAI, SASS, key taxa
		Rationale for indicator selection	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Indicators of eutrophication potetial	Indicators of dissolved salts	Indicators of physical water quality properties	Potential toxicity in the water	Indicators of pathogen from huamn sources	Monitor drivers and physical habitat for the reach and site	Monitor riparian habitat diversity, condition and processes maintaining it	FRAI, species diversity and abundance. Presence of alien species, key species	Monitor key riparian species & requirements for persistence	Monitor key taxa and abundance

NZHELELE Ri27														
				ntity			Quality			Hal	oitat		Biota	
Selection o	of sub-componer determination	nts for RQO	Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	ction	Importance Rating	VH	н	L	М	L	н	М	VH	VH	VH	VH	VL
	Sele	Impact Class	VH (-)	VH (-)	M (-)	VH (-)	VH (-)	N/A	N/A	VH (-)	VH (-)	VH (-)	VH (-)	N/A
Selection guidance	EcoSpec Selection	Ecosystem prioritization rating	Very High	Very High	Very Low	High	Moderate	Very Low	Very Low	Very High	Very High	Very High	Very High	Very Low
ection	36	Importance Rating	VH	L	L	М	L	VH	VH	VH	VH	М	VH	VL
Se	ctic Spe	Impact Class	VH (-)	VH (-)	M (-)	VH (-)	VH (-)	N/A	N/A	VH (-)	VH (-)	VH (-)	VH (-)	N/A
	UserSpec Selection	User prioritization rating	Very High	Moderate	Very Low	High	Moderate	Very Low	Very Low	Very High	Very High	High	Very High	Very Low
		Select for RQO Determination	у	у	Υ	Υ	Υ	Υ	Υ	у	Υ	Υ	Υ	Υ
danojes	ationale and	Rationale for sub- component choice	Monitor low flow levels and flow variability	Monitor high flow magnitude and frequency	Indicator of eutrophication potential	Aquatic ecosystem protection, irrigation agriculture	Aquatic ecosystem protection	Aquatic ecosystem protection against toxins	Human health protection (recreaton and possible subsistence domestic water provision)	Monitor biophysical habitat diversity and condition	Monitor riparian habitat diversity and condition	Monitor key fish species	Monitor key aquatic & riparian species and AIP	Monitor condition and key taxa
oi s	ð 2	EcoSpec	Y	Υ	Υ	Υ	Υ	Y		У	Υ	Y	Υ	Y
	900	UserSpec	Y		Υ	Υ	Υ	Y	Y			Y		
30		Integrated Measure												
i to	Documenting selection process & rationale	Indicators Selected for RQO determination	Maintainance low flows	Maintenance high flows	PO4-P, TIN (PAI)	EC/TDS (PAI)	рН, DO, TSS (PAI)	NTMP approach & variables	E coli & Faecal coliforms	IHI, GAI, VEGRAI	VEGRAI, IHI, GAI	FRAI, Key species	VEGRAI, Key species	PES score and category and key taxa
Š	5	Rationale for indicator selection	Monitor low flow levels and flow variability	Monitor high flow magnitude and frequency	Eutrophication potential	Osmoregulation, crop yield reduction	Aquatic ecosystem requirements	Potential toxicity in the water	Indicators of pathogen from huamn sources	Monitor biophysical habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor fish species diversity and abundance	Monitor key riparian species & requirements for persistence	PES score and category and key taxa

NWANEDI RRI I-Ri28

NWANEDI RRU-	Ri28													
			Qua	ntity			Quality			Hal	bitat		Biota	
Selection o	of sub-componer determination	nts for RQO	Low Flows (Main tenance Flows)	High Flows (Floods)	Nutrients	Salts	System varia bles	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	ction	Importance Rating	VH	н	L	L	L	н	н	VH	н	н	М	VL
	e le	Impact Class	VH (-)	VH (-)	M (+)	H (-)	L (-)	L (-)	N/A	VH (-)	VH (-)	VH (-)	VH (-)	N/A
Selection guidance	EcoSpec Selection	Ecosystem prioritization rating	Very High	Very High	Very Low	Low	Very Low	Low	Very Low	Very High	Very High	Very High	High	Very Low
lection	o e	Importance Rating	VH	L	L	М	L	VH	VH	L	М	М	М	VL
Se	UserSpec Selection	Impact Class User	VH (-)	VH (-)	M (+)	H (-)	L (-)	L (-)	N/A	VH (-)	VH (-)	VH (-)	VH (-)	N/A
	Use	prioritization rating	Very High	Moderate	Very Low	Moderate	Very Low	Low	Very Low	Moderate	High	High	High	Very Low
		Select for RQO Determination	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
-	rionale Tionale	Rationale for sub- component choice	Monitor low flow levels and flow variability	Monitor high flow magnitude and frequency	Indicator of eutrophication potential	Aquatic ecosystem protection, irrigation agriculture	Aquatic ecosystem protection	Aquatic ecosystem protection against toxins	Aquatic ecosystem protection against toxins	Monitor biophysical habitat diversity and condition	Monitor riparian habitat diversity and condition	Monitor key species, diversity and abundance	Monitor key aquatic & riparian species and AIP	Monitor condition and key taxa
5	<u>e</u>	EcoSpec	У	у	Υ	Y	Υ	Υ		У	Y	Y	Υ	Υ
5	SSE	UserSpec	у		Υ	Υ	Υ	Υ	Y			Υ		
	0 0 0	Integrated Measure												
-	Documenting selection process & rationale	Indicators Selected for RQO determination	Maintainance low flows	Maintenance high flows	PO4-P, TIN (PAI)	EC/TDS (PAI)	pH, DO, TSS (PAI)	NTMP approach & variables	E coli, Faecal coliforms	IHI, GAI and VEGRAI	VEGRAI, IHI, GAI	FRAI, Key species	VEGRAI, Key species	PES score and category and key taxa
		Rationale for indicator selection	Monitor low flow levels and flow variability	Monitor high flow magnitude and frequency	Eutrophication potential	Osmoregulation, crop yield reduction	Aquatic ecosystem requirements	Potential toxicity in the water	Pathogens important for human health protection	Monitor biophysical habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor fish species diversity and abundance	Monitor key riparian species & requirements for persistence	PES score and category and key taxa

MUTSHINDUDI RRU-Ri30

MUTSHINDUDI	RRU-Ri30													
				ntity			Quality			Hal	bitat		Biota	
Selection o	of sub-componer determination	nts for RQO	Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	ction	Importance Rating	М	L	L	L	L	М	VL	М	L	М	L	VL
	Sele	Impact Class	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	M (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	N/A
Selection guidance	EcoSpec Selection	Ecosystem prioritization rating	High	Moderate	Moderate	Moderate	Moderate	Low	Low	High	Moderate	High	Moderate	Very Low
ection	26	Importance Rating	VH	L	М	М	L	VH	VH	М	М	L	L	VL
Sel	ct io	Impact Class	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	M (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	N/A
	UserSpec Selection	User prioritization rating	Very High	Moderate	High	High	Moderate	Moderate	Very High	High	High	Moderate	Moderate	Very Low
		Select for RQO Determination	Υ	Υ						Υ	Y	Υ	Y	Υ
	rionale	Rationale for sub- component choice	Monitor low flow levels and flow variability	Monitor high flow magnitude, frequency and timing	Indicator of eutrophication potential	Aquatic ecosystem protection, subsistance agriculture & domestic water supply	Aquatic ecosystem protection	Indicator of agrochemical use (pesticides & herbicides)	Human health protection	Monitor biophysical habitat diversity and condition	Monitor riparian habitat diversity and condition	Monitor key fish species	Monitor key aquatic & riparian species and AIP	Monitor condition and key taxa
	×	EcoSpec	Y		Υ	Υ	Υ	Υ		у	Υ	Y	Υ	Υ
	ess	UserSpec	Υ		Υ	Υ	Y	Y	Υ			Y		
	proc	Integrated Measure												
	Documenting selection process & rationale	Indicators Selected for RQO determination	Maintainance low flows	Maintenance high flows	PO4-P, TIN	EC/TDS	рн, DO, TSS, Water temperature	Indicators monitored by the NTMP	E coli, Faecal coliforms	GAI, IHI, VEGRAI	VEGRAI, IHI, GAI	FRAI, Key species	VEGRAI, Key species	PES score and category and key taxa
	ă	Rationale for indicator selection	Monitor low flow levels and flow variability	Monitor high flow magnitude, frequency and timing	Eutrophication potential	Os moregulation, crop yield reduction, domestic water tastes	Aquatic ecosystem requirements, bulk water supply	Protection of aquatic ecosystems	Pathogens important for human health protection	Monitor biophysical habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor fish species diversity and abundance	Monitor key riparian species & requirements for persistence	PES score and category and key taxa

LATONYANDA RRU-Riii6

LATONYANDA R	RU-Riii6													
				ntity			Quality			Hai	bitat		Biota	
Selection o	of sub-componer determination	nts for RQO	Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	ction	Importance Rating	VH	н	L	L	М	М	L	н	М	Н	М	VL
	Sele	Impact Class	VH (-)	VH (-)	M (-)	L (-)	VH (-)	H (-)	H (-)	VH (-)	VH (-)	VH (-)	VH (-)	N/A
Selection guidance	EcoSpec Selection	Ecosystem prioritization rating	Very High	Very High	Very Low	Very Low	High	Moderate	Low	Very High	High	Very High	High	Very Low
ection	36	Importance Rating	VH	L	L	М	L	VH	VH	L	VH	М	М	VL
Se	d Še	Impact Class	VH (-)	VH (-)	M (-)	L (-)	VH (-)	H (-)	H (-)	VH (-)	VH (-)	VH (-)	VH (-)	N/A
	UserSpec Selection	User prioritization rating	Very High	Moderate	Very Low	Very Low	Moderate	High	High	Moderate	Very High	High	High	Very Low
		Select for RQO Determination	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
descri	ane COU	Rationale for sub- component choice	Monitor low flow level and variability	Monitor high flow magnitude and frequency	Eutrophication potential	Aquatic ecosystem protection, subsistance agriculture & domestic water supply	Aquatic ecosystem protection	Aquatic ecosystem and rural users protection	Human health protection	Monitor habitat diversity and condition	Monitor riparian habitat diversity and condition	Monitor key fish species	Monitor key aquatic & riparian species	Monitor condition and key taxa
oi oi	<u>ਦ</u> 8	EcoSpec	Y	Υ	Y	Y	Y	Y		У	Y	Y	Y	Υ
i i	ŝ	UserSpec	Υ		Υ	Υ	Υ	Υ	Υ			Y		
Š	50	Integrated Measure	Y											
e di se di s	Documenting selection process & rationale	Indicators Selected for RQO determination	Maintainance low flows	Maintenance high flows	PO4-P, TIN	EC/TDS	pH, DO, TSS	NTMP survey indicators	E coli, Faecal coliforms	IHI, VEGRAI and GAI	IHI, VEGRAI and GAI	FRAI, Key species	VEGRAI, Key species	PES score and category and key taxa
		Rationale for indicator selection	Monitor low flow level and variability	Monitor high flow magnitude and frequency	Eutrophication potential	Osmoregulation, crop yield reduction, domestic water tastes	Aquatic ecosystem requirements	Aquatic ecosystem protection	Pathogens important for human health protection	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor fish species diversity and abundance	Monitor key riparian species & requirements for persistence and trajectory of important alien species	PES score and category and key taxa

MUTALE RRU-Ri	33													
			Qua	ntity			Quality			Hai	bitat		Biota	
Selection o	of sub-componer determination	nts for RQO	Low Flows (Main tenance Flows)	High Flows (Floods)	Nutrients	Salts	System variables	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	ction	Importance Rating	Н	н	L	L	L	н	М	н	н	Н	Н	VL
	Sele	Impact Class	VH (-)	H (-)	M (-)	H (-)	VH (-)	N/A	H (-)	VH (-)	VH (-)	VH (-)	VH (-)	N/A
Selection guidance	EcoSpec Selection	Ecosystem prioritization rating	Very High	High	Very Low	Low	Moderate	Very Low	Moderate	Very High	Very High	Very High	Very High	Very Low
lection	on u	Importance Rating	VL	VL	L	М	L	VH	VH	L	М	М	L	VL
Se	UserSpec Selection	Impact Class	VH (-)	H (-)	M (-)	H (-)	VH (-)	N/A	H (-)	VH (-)	VH (-)	VH (-)	VH (-)	N/A
	UserSpec Selection	User prioritization rating	Low	Very Low	Very Low	Moderate	Moderate	Very Low	High	Moderate	High	High	Moderate	Very Low
		Select for RQO Determination	Υ	Υ	Y	Y	Y	Υ	Υ	Υ	Υ	Υ	Y	Y
0 1 2 2 2	arconaic	Rationale for sub- component choice	Monitor baseflows and variability	Monitor flow magnitude and frequency	Indicator of eutrophication potential	Aquatic ecosystem protection, subsistance agriculture & domestic water supply	Aquatic ecosystem protection	Aquatic ecosystem and rural users protection	Human health protection	Monitor instream habitat diversity and condition	Monitor riparian habitat diversity and condition	Monitor key fish species	Monitor key aquatic & riparian species	Monitor condition and key taxa
0	ð a	EcoSpec	Υ	Υ	Υ	Υ	Υ	Υ		Υ	Y	Y	Υ	Y
8	g	UserSpec	Y		Υ	Y	Υ	Υ	Y			Y		
	2 d.	Integrated Measure										Y		
-	Documenting selection process & rationale	Indicators Selected for RQO determination	Maintainance low flows	Maintenance high flows	PO4-P, TIN	EC/TDS	pH, DO, TSS	NTMP survey indicators	E coli, Faecal coliforms	GAI, IHI, VEGRAI	VEGRAI, IHI, GAI	FRAI, key species	VEGRAI, Key species	PES score and category and key taxa
ž.	8	Rationale for indicator selection	Monitor baseflows and variability	Monitor flow magnitude and frequency	Eutrophication potential	Osmoregulation, crop yield reduction, domestic water tastes	Aquatic ecosystem requirements	Aquatic ecosystem protection	Pathogens important for human health protection	Monitor instream habitat diversity, condition and processes maintaining it	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor fish species diversity and abundance	Monitor key riparian species & requirements for persistence	PES score and category and key taxa

MUTALE RRU-Ri	34													
			Qua	ntity			Quality			Hal	bitat		Biota	
Selection o	of sub-componer determination	nts for RQO	Low Flows (Main tenance Flows)	High Flows (Floods)	Nutrients	Salts	System	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	ction	Importance Rating	VH	н	М	L	М	н	L	VH	Н	Н	Н	Н
	Sele	Impact Class	VH (-)	VH (-)	VH (-)	H (-)	VH (-)	L (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)
Selection guidance	EcoSpec Selection	Ecosystem prioritization rating	Very High	Very High	High	Low	High	Low	Moderate	Very High	Very High	Very High	Very High	Very High
ection	S E	Importance Rating	VH	L	L	L	М	VH	VH	М	М	М	М	М
Sel	UserSpec	Impact Class	VH (-)	VH (-)	VH (-)	H (-)	VH (-)	L (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)	VH (-)
	UserSpec Selection	User prioritization rating	Very High	Moderate	Moderate	Low	High	Low	Very High	High	High	High	High	High
		Select for RQO Determination	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y
4	onale Onale	Rationale for sub- component choice	Monitor low flow level and variability	Monitor high flow magnitude and frequency	Nutrients and eutrophication potential	Domestic water supply & os mogerulation of aquatic organisms	Ecosystem health and domestic water supply	Aquatic ecosystem health	Domestic water supply & recreation	Monitor habitat diversity and condition	Monitor riparian habitat diversity and condition	Monitor key fish species	Monitor key aquatic & riparian species	Monitor Key taxa and to ensure EC is maintained
3	Ta .	EcoSpec	Υ	Υ	Υ	Υ	Υ	Υ		Υ	Y	Y	Y	Υ
0	8 8	UserSpec	Y		Υ	Υ	Υ	Υ	Y	у				
	proce	Integrated Measure												
19	Documenting selection process & rationale	Indicators Selected for RQO determination	Maintainance low flows	Maintenance high flows	PO4-P & TIN	EC / TDS	DO, pH, TSS, Water temperature	Agrochemicals	E coli & F coliforms	IHI, VEGRAI, GAI	VEGRAI, IHI, GAI	FRAI, Key species	VEGRAI, Key species	MIRAI, SASS Total Score and ASPT, Key taxa
	Š	Rationale for indicator selection	Monitor low flow level and variability	Monitor high flow magnitude and frequency	Eutrophication potential	Measure of dissolved salts	Measures of dissolved oxygen, suspended solids, pH & water temperature	Potential toxic substances	Pathogens important to protrct human health	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	FRAI, species diversity and abundance. Presence of alien species, key species	Monitor key riparian species & requirements for persistence	MIRAI, SASS Total Score and ASPT, Key taxa

LUVUVHU RRU-Ri32

LUVUVHU RR	U-Ri32													
				ntity			Quality			Hab	oitat		Biota	
Selection o	of sub-componer determination	nts for RQO	Low Flows (Maintenance Flows)	(spooly)	Nutrients	sales	System	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	ction	Importance Rating	VH	н	L	L	М	н	М	VH	VH	Н	н	VL
	Sele	Impact Class	VH (-)	VH (-)	VH (-)	M (-)	VH (-)	M (+)	VH (-)	VH (-)	VH (-)	N/A	VH (-)	VH (-)
Selection guidance	EcoSpec Selection	Ecosystem prioritization rating	Very High	Very High	Moderate	Very Low	High	Very Low	High	Very High	Very High	Very Low	Very High	Low
lection	y =	Importance Rating	VH	VH	L	L	М	VH	VH	М	VH	М	М	VL
Se	UserSpec Selection	Impact Class	VH (-)	VH (-)	VH (-)	M (-)	VH (-)	M (+)	VH (-)	VH (-)	VH (-)	N/A	VH (-)	VH (-)
	UserSpec	User prioritization rating	Very High	Very High	Moderate	Very Low	High	Very Low	Very High	High	Very High	Very Low	High	Low
		Select for RQO Determination	Υ	Y	Υ	Y	Y	Y	Υ	Υ	Y	Y	Y	Υ
;	<u>e</u>	Rationale for sub- component choice	Monitoring low flow levels and variability	Monitor high flow magnitude and frequency	Eutrophication potetial	Ecosystem health, subsistence irrigation, water provision	Ecosystem health, domestic water supply	Ecosystem health, domestic water supply	Protection of recreation & domestic water supply	Monitor instream habitat diversity and condition	Monitor riparian habitat diversity and condition	Monitor key fish species	Monitor key aquatic & riparian species	Monitor condition and key taxa
	Tion Tion	EcoSpec	Y	Υ	Υ	Υ	Υ	Υ		Y	Υ	Υ	Υ	Υ
	© ×ŏ	UserSpec	Y		Υ	Υ	Υ	Υ	Υ	Y				
	ocess	Integrated Measure	Y							Y				
	Documenting selection process & rationale	Indicators Selected for RQO determination	Maintainance low flows	Maintenance high flows	PO4-P, TIN	EC/TDS	DO, TSS, pH	NTMP constituents	E coll, F coliforms	GAI, IHI, VEGRAI	VEGRAI, IHI, GAI	FRAI, Key species	VEGRAI, Key species	PES score and category and key taxa
		Rationale for indicator selection	Monitoring low flow levels and variability	Monitor high flow magnitude and frequency	Measure of eutrophication potential	Measure of dissolved salts	Measures of dissolved oxygen, suspended solids, alkalinity/acidicty	Measure of toxic substances	Indicators of pathogens from human origin	Monitor instream habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	FRAI, species diversity and abundance. Presence of alien species, key species	Monitor key riparian species & requirements for persistence	PES score and category and key taxa

LUVUVHU RRU-Ri36

LUVUVHU RR	U-RI36													
			Qua	ntity			Quality			Hat	oitat		Biota	
Selection o	of sub-componen determination	nts for RQO	Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	ction	Importance Rating	VH	Н	VL	VL	VL	VL	VL	Н	VH	VH	Н	VL
	Sele	Impact Class	L (-)	N/A	N/A	N/A	N/A	N/A	N/A	L (-)	L (-)	L (-)	N/A	N/A
Selection guidance	EcoSpec Selection	Ecosystem prioritization rating	Moderate	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Low	Moderate	Moderate	Very Low	Very Low
lection	2 E	Importance Rating	VH	М	VL	VL	VL	VL	VL	VH	VH	VH	VH	VL
Se	rSpe	Impact Class	L (-)	N/A	N/A	N/A	N/A	N/A	N/A	L (-)	L (-)	L (-)	N/A	N/A
	UserSpec Selection	User prioritization rating	Moderate	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Low	Low	Low	Very Low	Very Low
		Select for RQO Determination	Υ	Υ	Υ	Y	Υ	Υ	Y	Y	Υ	Y	Υ	Υ
	ale	Rationale for sub- component choice	Monitor low flows and flow variability	Monitor high flow levels and frequency	Eutrophication potetial	Ecosystem health, subsistence irrigation, water provision	Ecosystem health, domestic water supply	Ecosystem health, domestic water supply	Protection of recreation & domestic water supply	Monitor instream habitat diversity and condition	Monitor riparian habitat diversity and condition	Monitor key fish species	Monitor key aquatic & riparlan species	Monitor condition and key taxa
	ation	EcoSpec	Υ	Υ	Υ	Υ	Y	Y		Υ	Υ	Υ	Υ	Υ
	ž	UserSpec	Υ		Υ	Υ	Y	Y	Y	Υ				
	rocess	Integrated Measure	Υ							Y				
	Documenting selection process & rationale	Indicators Selected for RQO determination	Maintainance low flows	Maintenance high flows	PO4-P, TIN	EC/TDS	DO, TSS, pH	NTMP constituents	E coll, F coliforms	GAI, IHI, VEGRAI	VEGRAI, IHI, GAI	FRAI, Key species	VEGRAI, Key species	PES score and category and key taxa
·		Rationale for indicator selection	Monitor low flows and flow variability	Monitor high flow levels and frequency	Measure of eutrophication potential	Measure of dissolved salts	Measures of dissolved oxygen, suspended solids, alkalinity/acidicty	Measure of toxic substances	Indicators of pathogens from human origin	Monitor instream habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	FRAI, species diversity and abundance. Presence of alien species, key species	Monitor key riparian species & requirements for persistence	PES score and category and key taxa

SHINGWEDZI RRU-Ri37

SHINGWEDZI	THIO HIO		Qua	ntity			Quality			Hab	oitat		Biota	
Selection	of sub-componer determination	ats for RQO	Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System	Toxics	Pathogens	Instream	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	ction	Importance Rating	VH	н	М	L	L	н	VL	н	VH	VH	VH	VH
	Sele	Impact Class	M (-)	M (-)	H (-)	H (-)	VH (-)	L (-)	H (-)	VH (-)	VH (-)	VH (-)	VH (-)	H (-)
Selection guidance	EcoSpec Selection	Ecosystem prioritization rating	Very High	Moderate	Moderate	Low	Moderate	Low	Very Low	Very High	Very High	Very High	Very High	Very High
ection	u r	Importance Rating	VH	VH	М	L	М	VH	М	VH	VH	VH	VH	VH
Sel	rSpe	Impact Class	M (-)	M (-)	H (-)	H (-)	VH (-)	L (-)	H (-)	VH (-)	VH (-)	VH (-)	VH (-)	H (-)
	UserSpec Selection	User prioritization rating	High	High	Moderate	Low	High	Low	Moderate	Very High	Very High	Very High	Very High	Very High
		Select for RQO Determination	Y	Υ	у	Υ	у	Y	Y	Y	Y	Υ	Υ	Y
	e.	Rationale for sub- component choice	Monitor low flow levels and variability	Monitor high flow magnitude, frequency and timing	Monitor eutrophication potential	Drinking water, osmoregulation of aquatic organisms	Water clarity, water safety concerns, aquatic ecosystem requirements	Concerns about agrochemicals &trace metals from mine seepage	Human health and water safety	Monitor habitat diversity and condition	Monitor riparian habitat diversity and condition	Monitor key fish species	Monitor key aquatic & riparian species and AIP	Monitor condition and key taxa
	ion ion	EcoSpec	у	у	Υ	Υ	Υ	Υ		у	Υ	γ	γ	Υ
	© ⊗	UserSpec	у		Υ		Υ	Y	Υ					
	cess	Integrated Measure												
:	Documenting selection process & rationale	Indicators Selected for RQO determination	Maintainance low flows	Maintenance high flows	PO4-P, TIN	EC/TDS	DO, Water Temp, pH, TSS	Toxic substances of NTMP, Heavy metals	E coli, Faecal collfaorms	IHI, GAI, VEGRAI	VEGRAI, IHI, GAI	FRAI, Key species	VEGRAI, Key species	PES score and category and key taxa
		Rationale for indicator selection	Monitor low flow levels and variability	Monitor high flow magnitude, frequency and timing	Excess nutrients cause eutrophication and related probels	Salts affect the osmoregulation of aquatc organisms and tastes in treated drinking water	DO& water temp impact aquatic organisms, TSS block gills of fish and other organisms, pH affect solubility of metals	No toxins should be present in the water	Pathogens can cause outbreak of waterborne diseases.	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	FRAI, species diversity and abundance. Presence of alien species, key species	Monitor key riparian species & requirements for persistence	PES score and category and key taxa

NYL RRU_Ri	1-1		Qua	antity			Quality			Hal	oitat		Biota	
Sele	ection of	sub-components for RQO determination	Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System variables	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	on	Importance Rating	н	Н	VL	VL	VL	VL	VL	М	М	н	Н	Н
auce	EcoSpec	Impact Class	M (-)	N/A	N/A	N/A	L (-)	L (-)	N/A	M (-)	M (-)	L (-)	M (-)	L (-)
Selection guidance	ш <i>б</i>	Ecosystem prioritization rating	Moderate	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Low	Low	Very Low	Moderate	Very Low
ection	on on	Importance Rating	VL	VL	VL	VL	VL	VL	VL	VL	VL	VL	VL	VL
Sel	UserSpec Selection	Impact Class	M (-)	N/A	N/A	N/A	L (-)	L (-)	N/A	M (-)	M (-)	L (-)	M (-)	L (-)
	n s	User prioritization rating	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low
		Select for RQO Determination												
		Rationale for sub-component choice	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Monitor nutrients and eutrophication	Monitor salts with respect to ecosystem impacts	Monitor DO, water temp, pH, TSS for aquatic ecosystem impacts	Monitor for potential toxicity in the water	Monitor pathogens for irrigation agriculture impacts	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor key fish species	Monitor key aquatic and riparian species and AIP	Monitor key species
	a	EcoSpec	Υ	Y	Y	Y	Υ	Y		Υ	Υ	Υ	Y	Y
	ional	UserSpec						Υ	Y					
	& at	Integrated Measure												
	Documenting selection process & rationale	Indicators Selected for RQO determination	Discharge	Discharge	PO4-P and TIN	Electrical conductivity (EC)	DO, Water Temp, TSS/Turbidity	NTMP approach and variables	E coli & Faecal coliforms	IHI, VEGRAI	IHI, VEGRAI	FRAI, Key species	VEGRAI, Key species	MIRAI, SASS5 Total Score and ASPT
	Documer	Rationale for indicator selection	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Phosphates & nitrogen stimulate primary production and can cause eutrophication	Salts affect the osmoregulation of aquatic organisms	Aquatic organisms are dependent on healthy ecosystems	Potential toxicity in the water	Pathogens can cause waterborne diseases	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor the species diviersity and condition	Monitor the Species richness and condition	Monitor the species diviersity and condition

MOGALAKWENA RRU-Ri3

WOGALAKW	VENA RRU-Ri3		Qua	intity			Quality			Hal	oitat		Biota	
Sele	ection of	sub-components for RQO determination	Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System variables	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	on On	Importance Rating	L	L	VL	VL	VL	VL	VL	L	L	L	L	L
auce	EcoSpec Selection	Impact Class	L (-)	H (-)	M (-)	L (-)	M (-)	Н (-)	N/A	L (-)	H (-)	L (-)	L (-)	L (-)
Selection guidance	- S	Ecosystem prioritization rating	Very Low	Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Low	Very Low	Very Low	Very Low
ection	on on	Importance Rating	L	L	VL	VL	VL	VL	VL	М	М	L	L	L
Sel	UserSpec Selection	Impact Class	L (-)	H (-)	M (-)	L (-)	M (-)	Н (-)	N/A	L (-)	H (-)	L (-)	L (-)	L (-)
	n s	User prioritization rating	Very Low	Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Moderate	Very Low	Very Low	Very Low
		Select for RQO Determination				_								
		Rationale for sub-component choice	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Monitor nutrients and eutrophication	Monitor salts with respect to ecosystem impacts	Monitor DO, water temp, pH, TSS for aquatic ecosystem impacts	Monitor for potential toxicity in the water	Monitor pathogens for irrigation agriculture impacts	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor key fish species	Monitor key aquatic and riparian species and AIP	Monitor key species
	au	EcoSpec	Υ	Y	Y	Y	Υ	Y		Υ	Υ	Υ	Y	Y
	ional	UserSpec						Υ	Y		Υ			
	& rat	Integrated Measure												
	Documenting selection process & rationale	Indicators Selected for RQO determination	Discharge	Discharge	PO4-P and TIN	Electrical conductivity (EC)	DO, Water Temp, TSS/Turbidity	NTMP approach and variables	E coli & Faecal coliforms	IHI, VEGRAI	IHI, VEGRAI	FRAI, Key species	VEGRAI, Key species	MIRAI, SASS5 Total Score and ASPT
	Босите	Rationale for indicator selection	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Phosphates & nitrogen stimulate primary production and can cause eutrophication	Salts affect the osmoregulation of aquatic organisms	Aquatic organisms are dependent on healthy ecosystems	Potential toxicity in the water	Pathogens can cause waterborne diseases	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor the species diviersity and condition	Monitor the Species richness and condition	Monitor the species diviersity and condition

SW/WS IV	U_Riv16		Qua	antity			Quality			Hal	oitat		Biota	
Sele	ection (of sub-components for RQO determination	Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System variables	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	o,	Importance Rating	Н	Н	VL	VL	VL	VL	VL	Н	Н	Н	Н	Н
ance	EcoSpec Selection	Impact Class	VH (-)	VH (-)	N/A	N/A	N/A	L (-)	M (-)	N/A	VH (-)	M (-)	VH (-)	L (-)
Selection guidance	щ Ж	Ecosystem prioritization rating	Very High	Very High	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very High	Moderate	Very High	Low
ction	o u	Importance Rating	L	L	VL	VL	VL	VL	VL	VL	L	L	VL	VL
Sele	UserSpec Selection	Impact Class	VH (-)	VH (-)	N/A	N/A	N/A	L (-)	M (-)	N/A	VH (-)	M (-)	VH (-)	L (-)
	ت م	User prioritization rating	Moderate	Moderate	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Moderate	Very Low	Low	Very Low
		Select for RQO Determination												
		Rationale for sub-component choice	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Monitor nutrients and eutrophication	Monitor salts with respect to ecosystem impacts	Monitor DO, water temp, pH, TSS for aquatic ecosystem impacts	Monitor for potential toxicity in the water	Monitor pathogens for irrigation agriculture impacts	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor key fish species	Monitor key aquatic and riparian species and AIP	Monitor key species
	o o	EcoSpec	Y	Y	Υ	Y	Y	Y		Υ	Y	Y	Y	Υ
	ional	UserSpec	Y	Y				Y	Υ		Υ			
	s at	Integrated Measure												
	Documenting selection process & rationale	Indicators Selected for RQO determination	Discharge	Discharge	PO4-P and TIN	Electrical conductivity (EC)	DO, Water Temp, TSS/Turbidity	NTMP approach and variables	E coli & Faecal coliforms	IHI, VEGRAI	IHI, VEGRAI	FRAI, Key species	VEGRAI, Key species	MIRAI, SASS5 Total Score and ASPT
	Docume	Rationale for indicator selection	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Phosphates & nitrogen stimulate primary production and can cause eutrophication	Salts affect the osmoregulation of aquatic organisms	Aquatic organisms are dependent on healthy ecosystems	Potential toxicity in the water	Pathogens can cause waterborne diseases	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor the species diviersity and condition	Monitor the Species richness and condition	Monitor the species diviersity and condition

57 11 11	RU_Ri2			Qua	antity			Quality			Hal	oitat		Biota	
Se	elect	tion of	sub-components for RQO determination	Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System variables	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
); L	Importance Rating	VL	VL	VL	VL	VL	VL	VL	VL	VL	VL	VL	VL
auce		EcoSpec Selection	Impact Class	VH (-)	H (-)	N/A	N/A	N/A	N/A	N/A	L (-)	L (-)	L (-)	N/A	L (-)
Selection guidance		ш %	Ecosystem prioritization rating	Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low
ction		o u	Importance Rating	VH	VH	VL	VL	VL	VL	VL	VL	VL	VL	VL	VL
Sele		UserSpec Selection	Impact Class	VH (-)	H (-)	N/A	N/A	N/A	N/A	N/A	L (-)	L (-)	L (-)	N/A	L (-)
		בי א	User prioritization rating	Very High	Very High	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low
			Select for RQO Determination												
			Rationale for sub-component choice	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Monitor nutrients and eutrophication	Monitor salts with respect to ecosystem impacts	Monitor DO, water temp, pH, TSS for aquatic ecosystem impacts	Monitor for potential toxicity in the water	Monitor pathogens for irrigation agriculture impacts	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor key fish species	Monitor key aquatic and riparian species and AIP	Monitor key species
	a		EcoSpec	Υ	Y	Υ	Y	Y	Y		Υ	Y	Y	Y	Υ
	ional		UserSpec	Υ	Y				Y	Y					
	& rat		Integrated Measure												
	Documenting selection process & rationale	Indicators Selected for RQO determination	Discharge	Discharge	PO4-P and TIN	Electrical conductivity (EC)	DO, Water Temp, TSS/Turbidity	NTMP approach and variables	E coli & Faecal coliforms	IHI, VEGRAI	IHI, VEGRAI	FRAI, Key species	VEGRAI, Key species	MIRAI, SASS5 Total Score and ASPT	
	Documer		Rationale for indicator selection	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Phosphates & nitrogen stimulate primary production and can cause eutrophication	Salts affect the osmoregulation of aquatic organisms	Aquatic organisms are dependent on healthy ecosystems	Potential toxicity in the water	Pathogens can cause waterborne diseases	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor the species diviersity and condition	Monitor the Species richness and condition	Monitor the species diviersity and condition

NZHELELE I	RRU_Ri26		Qua	antity			Quality			Ha	bitat		Biota	
Sele	ection o	f sub-components for RQO determination	Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System variables	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	ວະ	Importance Rating	Н	Н	VL	VL	VL	VL	VL	Н	Н	М	VL	М
auce	EcoSpec Selection	Impact Class	VH (-)	VH (-)	N/A	N/A	N/A	N/A	N/A	L (-)	L (-)	L (-)	N/A	L (-)
Selection guidance	ш ў	Ecosystem prioritization rating	Very High	Very High	Very Low	Very Low	Very Low	Very Low	Very Low	Low	Low	Very Low	Very Low	Very Low
ection	on on	Importance Rating	VH	VH	VL	VL	VL	VL	VL	VL	VL	VL	VL	VL
Sele	UserSpec Selection	Impact Class	VH (-)	VH (-)	N/A	N/A	N/A	N/A	N/A	L (-)	L (-)	L (-)	N/A	L (-)
	ט מ	User prioritization rating	Very High	Very High	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low
		Select for RQO Determination												
		Rationale for sub-component choice	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Monitor nutrients and eutrophication	Monitor salts with respect to ecosystem impacts	Monitor D.O., water temp, pH, TSS for aquatic ecosystem impacts	Monitor for potential toxicity in the water	Monitor pathogens for irrigation agriculture impacts	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor key fish spedes	Monitor key aquaticand riparian species and AIP	Monitor key species
	a	EcoSpec	Y	Y	Y	Y	Υ	Y	Y	Υ	Y	Y	Υ	Υ
	ionale	UserSpec	Υ	Υ				Υ						
	& rat	Integrated Measure												
	Documenting selection process & rationale	Indicators Selected for RQO determination	Discharge	Discharge	PO4-P and TIN	Electrical conductivity (EC)	DO, Water Temp, TSS/Turbidity	NTMP approach and variables	E coli & Faecal coliforms	IHI, VEGRAI	IHI, VEGRAI	FRAI, Key species	VEGRAI, Key species	MIRAl, SASS5 Total Score and ASPT
	Восите :	Rationale for indicator selection	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Phosphates & nitrogen stimulate primary production and can cause eutrophication	Salts affect the osmoregulation of aquatic organisms	Aquatic organisms are dependent on healthy ecosystems	Potential toxicity in the water	Pathogens can cause waterborne diseases	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor the species diviersity and condition	Monitor the Species richness and condition	Monitor the species diviersity and condition

TSHISHIRU RRU_Riv33

	o itito_	_Riv33		Qua	antity			Quality			Hal	bitat		Biota	
Sel	lect	ion of	sub-components for RQO determination	Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System variables	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
		on On	Importance Rating	L	L	VL	VL	VL	VL	VL	L	L	L	L	L
ance		EcoSpec Selection	Impact Class	L (-)	L (-)	N/A	N/A	M (-)	N/A	N/A	L (-)	L (-)	L (-)	N/A	L (-)
Selection guidance		шХ	Ecosystem prioritization rating	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low
ction		on on	Importance Rating	L	L	VL	VL	VL	VL	VL	VL	VL	VL	VL	VL
Sele		UserSpec Selection	Impact Class	L (-)	L (-)	N/A	N/A	M (-)	N/A	N/A	L (-)	L (-)	L (-)	N/A	L (-)
		⊃ vš	User prioritization rating	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low
			Select for RQO Determination												
			Rationale for sub-component choice	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Monitor nutrients and eutrophication	Monitor salts with respect to ecosystem impacts	Monitor DO, water temp, pH, TSS for aquatic ecosystem impacts	Monitor for potential toxicity in the water	Monitor pathogens for irrigation agriculture impacts	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor key fish species	Monitor key aquatic and riparian species and AIP	Monitor key species
	a		EcoSpec	Υ	Y	Υ	Y	Y	Y		Υ	Υ	Υ	Y	Y
	ional		UserSpec						Y	Υ					
	& rat		Integrated Measure												
	Documenting selection process & rationale	Indicators Selected for RQO determination	Discharge	Discharge	PO4-P and TIN	Electrical conductivity (EC)	DO, Water Temp, TSS/Turbidity	NTMP approach and variables	E coli & Faecal coliforms	IHI, VEGRAI	IHI, VEGRAI	FRAI, Key species	VEGRAI, Key species	MIRAI, SASS5 Total Score and ASPT	
	Documen		Rationale for indicator selection	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Phosphates & nitrogen stimulate primary production and can cause eutrophication	Salts affect the osmoregulation of aquatic organisms	Aquatic organisms are dependent on healthy ecosystems	Potential toxicity in the water	Pathogens can cause waterborne diseases	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor the species diviersity and condition	Monitor the Species richness and condition	Monitor the species diviersity and condition

STERK RRU	_1114			Qua	antity			Quality			Hal	oitat		Biota	
Sele	ection	of	sub-components for RQO determination	Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System variables	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	ي پ	r.	Importance Rating	М	М	М	VL	М	VL	VL	М	М	М	М	М
ance	EcoSpec	iectio	Impact Class	H (-)	L (-)	N/A	N/A	M (-)	N/A	L (-)	H (-)	L (-)	N/A	L (-)	M (-)
Selection guidance	<u> </u>	ž	Ecosystem prioritization rating	Moderate	Very Low	Very Low	Very Low	Low	Very Low	Very Low	Moderate	Very Low	Very Low	Very Low	Low
ction	oe c	on C	Importance Rating	VH	М	L	L	L	VL	VL	VL	VL	VL	VL	VL
Sele	UserSpec	Siectic	Impact Class	H (-)	L (-)	N/A	N/A	M (-)	N/A	L (-)	H (-)	L (-)	N/A	L (-)	M (-)
	ت ت	ň	User prioritization rating	High	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low
			Select for RQO Determination												
			Rationale for sub-component choice	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Monitor nutrients and eutrophication	Monitor salts with respect to ecosystem impacts	Monitor DO, water temp, pH, TSS for aquatic ecosystem impacts	Monitor for potential toxicity in the water	Monitor pathogens for irrigation agriculture impacts	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor key fish species	Monitor key aquatic and riparian species and AIP	Monitor key species
	au au		EcoSpec	Y	Y	Υ	Y	Y	Y	Y	Υ	Υ	Y	Y	Υ
	ional		UserSpec	Υ	Y				Y						
	& rat		Integrated Measure												
	Documenting selection process & rationale	Indicators Selected for RQO determination	Discharge	Discharge	PO4-P and TIN	Electrical conductivity (EC)	DO, Water Temp, TSS/Turbidity	NTMP approach and variables	E coli & Faecal coliforms	IHI, VEGRAI	IHI, VEGRAI	FRAI, Key species	VEGRAI, Key species	MIRAI, SASS5 Total Score and ASPT	
	Росиме		Rationale for indicator selection	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Phosphates & nitrogen stimulate primary production and can cause eutrophication	Salts affect the osmoregulation of aquatic organisms	Aquatic organisms are dependent on healthy ecosystems	Potential toxicity in the water	Pathogens can cause waterborne diseases	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor the species diviersity and condition	Monitor the Species richness and condition	Monitor the species diviersity and condition

LEPHALALA RRU-Riii3

CEITIADADAT	RRU-Riii3		Quantity Qu					Quality			bitat	Biota		
Sele	Selection of sub-components for RQO determination			High Flows (Floods)	Nutrients	Salts	System variables	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	2; C	Importance Rating	≥ Low Flows (Maintenar Flows)	М	L	L	М	VL	VL	М	М	М	М	М
ance	EcoSpec Selection	Impact Class	M (-)	N/A	H (-)	L (-)	H (-)	L (-)	L (-)	L (-)	H (-)	L (-)	H (-)	H (-)
Selection guidance	ш Х	Ecosystem prioritization rating	Low	Very Low	Low	Very Low	Moderate	Very Low	Very Low	Very Low	Moderate	Very Low	Moderate	Moderate
ction	ec on	Importance Rating	VH	VL	L	L	L	VL	L	VL	VL	VL	VL	VL
Sele	UserSpec	Impact Class	M (-)	N/A	H (-)	L (-)	H (-)	L (-)	L (-)	L (-)	H (-)	L (-)	H (-)	Н (-)
	ה מ	User prioritization rating	Moderate	Very Low	Low	Very Low	Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low
		Select for RQO Determination	Y	Y	Y	Y	Y	Y	Y	Υ	Y	Y	Y	Y
		Rationale for sub-component choice	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Monitor nutrients and eutrophication	Montor salts with respect to ecosystem impacts	Monitor DO, water temp, pH, TSS for aquatic ecosystem impacts	Monitor for potential toxicity in the water	Monitor pathogens for irrigation agriculture impacts	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor key fish species	Monitor key aquaticand riparian species and AlP	Monitor key species
	au	EcoSpec	Υ	Y	Υ	Υ	Υ	Υ		Υ	Y	Υ	Υ	Y
	ional	UserSpec	Y					Y	Y					
	& rat	Integrated Measure												
	Documenting selection process & rationale	Indicators Selected for RQO determination	Discharge	Discharge	PO4-P and TIN	Electrical conductivity (EC)	DO, Water Temp, TSS/Turbidity	NTMP approach and variables	E coli & Faecal coliforms	IHI, VEGRAI	VEGRAI, IHI	FRAI, Key species	VEGRAI, Key species	MIRAI, SASS5 Total Score and ASPT
	Documer	Rationale for indicator selection	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Phosphates & nitrogen stimulate primary production and can cause eutrophication	Salts affect the osmoregulation of aquatic organisms	Aquatic organisms are dependent on healthy ecosystems	Potential toxicity in the water	Pathogens can cause waterborne diseases	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor the species diviersity and condition	Monitor the Species richness and condition	Monitor the species diviersity and condition

STINKWATER RRU_Rvi2

STINKWATER RRU_Rvi2			Quantity							Hal	bitat		Biota		
Sel	Selection of sub-components for RQO determination			Low Flows (Maintenance Flows)	High Flows (Floods)	Nutrients	Salts	System variables	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	26	r.	Importance Rating	М	М	VL	VL	VL	VL	VL	VL	VL	VL	М	VL
ance	oSpe	Selection	Impact Class	H (-)	N/A	M (-)	N/A	N/A	M (-)	N/A	N/A	N/A	N/A	N/A	L (-)
Selection guidance		Š	Ecosystem prioritization rating	Moderate	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low
ction	Sec	uo	Importance Rating	М	М	VL	VL	VL	VL	VL	VL	VL	VL	VL	VL
Sele	serSp	Selection	Impact Class	Н (-)	N/A	M (-)	N/A	N/A	M (-)	N/A	N/A	N/A	N/A	N/A	L (-)
	Ď	Š	User prioritization rating	Moderate	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low
			Select for RQO Determination												
			Rationale for sub-component choice	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Monitor nutrients and eutrophication	Monitor salts with respect to ecosystem impacts	Monitor DO, water temp, pH, TSS for aquatic ecosystem impacts	Monitor for potential toxicity in the water	Monitor pathogens for irrigation agriculture impacts	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor key fish species	Monitor key aquatic and riparian species and AIP	Monitor key species
	a		EcoSpec	Y	Y	Υ	Y	Υ	Y		Υ	Y	Υ	Υ	Y
	ional		UserSpec	Y					Y	Y					
	s za		Integrated Measure												
	Documenting selection process & rationale		Indicators Selected for RQO determination	Discharge	Discharge	PO4-P and TIN	Electrical conductivity (EC)	DO, Water Temp, TSS/Turbidity	NTMP approach and variables	E coli & Faecal coliforms	IHI, VEGRAI	IHI, VEGRAI	FRAI, Key species	VEGRAI, Key species	Key taxa and abundance
	Documen		Rationale for indicator selection	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Phosphates & nitrogen stimulate primary production and can cause eutrophication	Salts affect the osmoregulation of aquatic organisms	Aquatic organisms are dependent on healthy ecosystems	Potential toxicity in the water	Pathogens can cause waterborne diseases	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor the species diviersity and condition	Monitor the Species richness and condition	Monitor the species diviersity and condition

MUTALE RRU_Rvii33				Quality						Habitat Biota					
Sele	Selection of sub-components for RQO determination			High Flows (Floods)	Nutrients	Salts	System variables	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates	
	Si Li	Importance Rating	VH	VH	VL	VL	VL	VL	VL	VH	VH	Н	Н	Н	
ance	EcoSpec Selection	Impact Class	N/A	L (-)	N/A	N/A	L (-)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Selection guidance	ш »	Ecosystem prioritization rating	Low	Moderate	Very Low	Very Low	Very Low	Very Low	Very Low	Low	Low	Very Low	Very Low	Very Low	
ection	on On	Importance Rating	VH	L	VL	VL	VL	VL	VL	VL	VL	VL	VL	VL	
Sele	UserSpec Selection	Impact Class	N/A	L (-)	N/A	N/A	L (-)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
	n s	User prioritization rating	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	
		Select for RQO Determination													
		Rationale for sub-component choice	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Monitor nutrients and eutrophication	Monitor salts with respect to ecosystem impacts	Monitor DO, water temp, pH, TSS for aquatic ecosystem impacts	Monitor for potential toxicity in the water	Monitor pathogens for irrigation agriculture impacts	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor key fish species	Monitor key aquatic and riparian species and AIP	Monitor key species	
	eu	EcoSpec	Υ	Y	Υ	Y	Υ	Υ		Υ	Υ	Υ	Υ	Y	
	ional	UserSpec						Υ	Υ						
	& rat	Integrated Measure													
	Documenting selection process & rationale	Indicators Selected for RQO determination	Discharge	Discharge	PO4-P and TIN	Electrical conductivity (EC)	DO, Water Temp, TSS/Turbidity	NTMP approach and variables	E coli & Faecal coliforms	IHI, VEGRAI	IHI, VEGRAI	FRAI, Key species	VEGRAI, Key species	MIRAI, SASS5 Total Score and ASPT	
	Docume	Rationale for indicator selection	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Phosphates & nitrogen stimulate primary production and can cause eutrophication	Salts affect the osmoregulation of aquatic organisms	Aquatic organisms are dependent on healthy ecosystems	Potential toxicity in the water	Pathogens can cause waterborne diseases	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor the species diviersity and condition	Monitor the Species richness and condition	Monitor the species diviersity and condition	

MPHONGOLO RRU_Riv28

WII HONGO	LO RRU_Riv28		Quantity Quality							Ha				
Sele	Selection of sub-components for RQO determination			High Flows (Floods)	Nutrients	Salts	System variables	Toxics	Pathogens	Instream habitat	Riparian Habitat	Fish	Aquatic & riparian plant species	Aquatic Invertebrates
	on	Importance Rating	VH	VH	VH	VL	VL	VL	VL	VH	VH	VH	VH	VH
ance	EcoSpec Selection	Impact Class	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Selection guidance	- S	Ecosystem prioritization rating	Low	Low	Low	Very Low	Very Low	Very Low	Very Low	Low	Low	Low	Low	Low
ection	on ion	Importance Rating	VH	VH	VH	VL	VH	VL	VL	VH	VH	VH	VH	VH
Sel	UserSpec Selection	Impact Class	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	⊃ s	User prioritization rating	Low	Low	Low	Very Low	Low	Very Low	Very Low	Low	Low	Low	Low	Low
		Select for RQO Determination												
		Rationale for sub-component choice	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Monitor nutrients and eutrophication	Monitor salts with respect to ecosystem impacts	Monitor DO, water temp, pH, TSS for aquatic ecosystem impacts	Monitor for potential toxicity in the water	Monitor pathogens for irrigation agriculture impacts	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor key fish species	Monitor key aquatic and riparian species and AlP	Monitor key species
	au	EcoSpec	Υ	Y	Y	Y	Y	Y		Υ	Y	Υ	Υ	Y
	ional	UserSpec						Y	Υ					
	& rat	Integrated Measure												
	Documenting selection process & rationale	Indicators Selected for RQO determination	Discharge	Discharge	PO4-P and TIN	Electrical conductivity (EC)	DO, Water Temp, TSS/Turbidity	NTMP approach and variables	E coli & Faecal coliforms	IHI, VEGRAI	IHI, VEGRAI	FRAI, Key species	VEGRAI, Key species	MIRAI, SASS5 Total Score and ASPT
	. Восите:	Rationale for indicator selection	Monitor low flow levels and variability	Monitor high flow magnitude and frequency	Phosphates & nitrogen stimulate primary production and can cause eutrophication	Salts affect the osmoregulation of aquatic organisms	Aquatic organisms are dependent on healthy ecosystems	Potential toxicity in the water	Pathogens can cause waterborne diseases	Monitor habitat diversity and condition	Monitor riparian habitat diversity, condition and processes maintaining it	Monitor the species diviersity and condition	Monitor the Species richness and condition	Monitor the species diviersity and condition